Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

Related tags

Deep Learningsac
Overview

This repository is no longer maintained. Please use our new Softlearning package instead.

Soft Actor-Critic

Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains. The algorithm is based on the paper Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor presented at ICML 2018.

This implementation uses Tensorflow. For a PyTorch implementation of soft actor-critic, take a look at rlkit by Vitchyr Pong.

See the DIAYN documentation for using SAC for learning diverse skills.

Getting Started

Soft Actor-Critic can be run either locally or through Docker.

Prerequisites

You will need to have Docker and Docker Compose installed unless you want to run the environment locally.

Most of the models require a Mujoco license.

Docker installation

If you want to run the Mujoco environments, the docker environment needs to know where to find your Mujoco license key (mjkey.txt). You can either copy your key into /.mujoco/mjkey.txt , or you can specify the path to the key in your environment variables:

export MUJOCO_LICENSE_PATH=
   
    /mjkey.txt

   

Once that's done, you can run the Docker container with

docker-compose up

Docker compose creates a Docker container named soft-actor-critic and automatically sets the needed environment variables and volumes.

You can access the container with the typical Docker exec-command, i.e.

docker exec -it soft-actor-critic bash

See examples section for examples of how to train and simulate the agents.

To clean up the setup:

docker-compose down

Local installation

To get the environment installed correctly, you will first need to clone rllab, and have its path added to your PYTHONPATH environment variable.

  1. Clone rllab
cd 
   
    
git clone https://github.com/rll/rllab.git
cd rllab
git checkout b3a28992eca103cab3cb58363dd7a4bb07f250a0
export PYTHONPATH=$(pwd):${PYTHONPATH}

   
  1. Download and copy mujoco files to rllab path: If you're running on OSX, download https://www.roboti.us/download/mjpro131_osx.zip instead, and copy the .dylib files instead of .so files.
mkdir -p /tmp/mujoco_tmp && cd /tmp/mujoco_tmp
wget -P . https://www.roboti.us/download/mjpro131_linux.zip
unzip mjpro131_linux.zip
mkdir 
   
    /rllab/vendor/mujoco
cp ./mjpro131/bin/libmujoco131.so 
    
     /rllab/vendor/mujoco
cp ./mjpro131/bin/libglfw.so.3 
     
      /rllab/vendor/mujoco
cd ..
rm -rf /tmp/mujoco_tmp

     
    
   
  1. Copy your Mujoco license key (mjkey.txt) to rllab path:
cp 
   
    /mjkey.txt 
    
     /rllab/vendor/mujoco

    
   
  1. Clone sac
cd 
   
    
git clone https://github.com/haarnoja/sac.git
cd sac

   
  1. Create and activate conda environment
cd sac
conda env create -f environment.yml
source activate sac

The environment should be ready to run. See examples section for examples of how to train and simulate the agents.

Finally, to deactivate and remove the conda environment:

source deactivate
conda remove --name sac --all

Examples

Training and simulating an agent

  1. To train the agent
python ./examples/mujoco_all_sac.py --env=swimmer --log_dir="/root/sac/data/swimmer-experiment"
  1. To simulate the agent (NOTE: This step currently fails with the Docker installation, due to missing display.)
python ./scripts/sim_policy.py /root/sac/data/swimmer-experiment/itr_
   
    .pkl

   

mujoco_all_sac.py contains several different environments and there are more example scripts available in the /examples folder. For more information about the agents and configurations, run the scripts with --help flag. For example:

python ./examples/mujoco_all_sac.py --help
usage: mujoco_all_sac.py [-h]
                         [--env {ant,walker,swimmer,half-cheetah,humanoid,hopper}]
                         [--exp_name EXP_NAME] [--mode MODE]
                         [--log_dir LOG_DIR]

mujoco_all_sac.py contains several different environments and there are more example scripts available in the /examples folder. For more information about the agents and configurations, run the scripts with --help flag. For example:

python ./examples/mujoco_all_sac.py --help
usage: mujoco_all_sac.py [-h]
                         [--env {ant,walker,swimmer,half-cheetah,humanoid,hopper}]
                         [--exp_name EXP_NAME] [--mode MODE]
                         [--log_dir LOG_DIR]

Benchmark Results

Benchmark results for some of the OpenAI Gym v2 environments can be found here.

Credits

The soft actor-critic algorithm was developed by Tuomas Haarnoja under the supervision of Prof. Sergey Levine and Prof. Pieter Abbeel at UC Berkeley. Special thanks to Vitchyr Pong, who wrote some parts of the code, and Kristian Hartikainen who helped testing, documenting, and polishing the code and streamlining the installation process. The work was supported by Berkeley Deep Drive.

Reference

@article{haarnoja2017soft,
  title={Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor},
  author={Haarnoja, Tuomas and Zhou, Aurick and Abbeel, Pieter and Levine, Sergey},
  booktitle={Deep Reinforcement Learning Symposium},
  year={2017}
}
Owner
Tuomas Haarnoja
Tuomas Haarnoja
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained

Hassan Dbouk 7 Dec 05, 2022
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023