Universal Probability Distributions with Optimal Transport and Convex Optimization

Overview

Sylvester normalizing flows for variational inference

Pytorch implementation of Sylvester normalizing flows, based on our paper:

Sylvester normalizing flows for variational inference (UAI 2018)
Rianne van den Berg*, Leonard Hasenclever*, Jakub Tomczak, Max Welling

*Equal contribution

Requirements

The latest release of the code is compatible with:

  • pytorch 1.0.0

  • python 3.7

Thanks to Martin Engelcke for adapting the code to provide this compatibility.

Version v0.3.0_2.7 is compatible with:

  • pytorch 0.3.0 WARNING: More recent versions of pytorch have different default flags for the binary cross entropy loss module: nn.BCELoss(). You have to adapt the appropriate flags if you want to port this code to a later vers
    ion.

  • python 2.7

Data

The experiments can be run on the following datasets:

  • static MNIST: dataset is in data folder;
  • OMNIGLOT: the dataset can be downloaded from link;
  • Caltech 101 Silhouettes: the dataset can be downloaded from link.
  • Frey Faces: the dataset can be downloaded from link.

Usage

Below, example commands are given for running experiments on static MNIST with different types of Sylvester normalizing flows, for 4 flows:

Orthogonal Sylvester flows
This example uses a bottleneck of size 8 (Q has 8 columns containing orthonormal vectors).

python main_experiment.py -d mnist -nf 4 --flow orthogonal --num_ortho_vecs 8 

Householder Sylvester flows
This example uses 8 Householder reflections per orthogonal matrix Q.

python main_experiment.py -d mnist -nf 4 --flow householder --num_householder 8

Triangular Sylvester flows

python main_experiment.py -d mnist -nf 4 --flow triangular 

To run an experiment with other types of normalizing flows or just with a factorized Gaussian posterior, see below.


Factorized Gaussian posterior

python main_experiment.py -d mnist --flow no_flow

Planar flows

python main_experiment.py -d mnist -nf 4 --flow planar

Inverse Autoregressive flows
This examples uses MADEs with 320 hidden units.

python main_experiment.py -d mnist -nf 4 --flow iaf --made_h_size 320

More information about additional argument options can be found by running ```python main_experiment.py -h```

Cite

Please cite our paper if you use this code in your own work:

@inproceedings{vdberg2018sylvester,
  title={Sylvester normalizing flows for variational inference},
  author={van den Berg, Rianne and Hasenclever, Leonard and Tomczak, Jakub and Welling, Max},
  booktitle={proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI)},
  year={2018}
}
Comments
  • about log_p_zk

    about log_p_zk

    Hi Rianne, This is a great code, and I have a little question about logp(zk), we hope p(zk) in VAE can be a distribution whose form is no fixed, but it seems that the calculate of logp(zk) in line81 of loss.py imply that p(zk) is a standard Gaussion. Are there some mistakes about my understanding?
    Thank your for this code

    opened by Archer666 10
  • loss = bce + beta * kl

    loss = bce + beta * kl

    hello Rianne: Thanks very much. I am a bit confused with line 44 in loss.py : loss = bce + beta * kl. Based on equation 3 in Tomczak's paper (Improving Variational Auto-Encoder Using Householder Flows), shouldn't "loss = bce - beta * kl "? Also, why use -ELBO instead of ELBO when reporting your metrics? Thanks

    opened by tumis1946 4
  • PyTorch_v1 and Python3 compatibility

    PyTorch_v1 and Python3 compatibility

    Hi Rianne,

    This PR contains a 'minimal' set of changes to run the code with the latest PyTorch versions and Python 3 ( #1 #2 )

    It is 'minimal' in the sense that I only made changes that affect functionality. There are additional cosmetic changes that could be made; e.g. Variable(), the volatile flag, and F.sigmoid() have been deprecated but they should not affect functionality.

    I tested the changes with PyTorch 1.0.0 and Python 3.7 on MNIST and Freyfaces, giving me similar results for the baseline VAE without any flows.

    I am not sure if more rigorous test should be done and if you want to merge this into master or keep a separate branch.

    Best, Martin

    opened by martinengelcke 1
  • PR for PyTorch 1.+ and Python 3 support

    PR for PyTorch 1.+ and Python 3 support

    Hi Rianne,

    Thank you for this really nice code release :)

    I cloned the repo and made some changes so that it runs with PyTorch 1.+ and Python 3. Also solved the issue mentioned in #1 . I tested the changes on MNIST (binary input) and Freyfaces (multinomial input), giving similar results to the original code.

    If you are interested in reviewing and potentially adding this to the repo, I would be happy to clean things up and make a PR.

    Best, Martin

    opened by martinengelcke 1
  • RuntimeError in default main experiment

    RuntimeError in default main experiment

    Hi Rianne,

    I'm trying to run the default experiment on cpu with a small latent space dimension (z=5):

    python main_experiment.py -d mnist --flow no_flow -nc --z_size 5

    Which unfortunately gives the following error:

    Traceback (most recent call last):
      File "main_experiment.py", line 278, in <module>
        run(args, kwargs)
      File "main_experiment.py", line 189, in run
        tr_loss = train(epoch, train_loader, model, optimizer, args)
      File ".../sylvester-flows/optimization/training.py", line 39, in train
        loss.backward()
      File "//anaconda/envs/dl/lib/python3.6/site-packages/torch/tensor.py", line 102, in backward
        torch.autograd.backward(self, gradient, retain_graph, create_graph)
      File "//anaconda/envs/dl/lib/python3.6/site-packages/torch/autograd/__init__.py", line 90, in backward
        allow_unreachable=True)  # allow_unreachable flag
    RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
    

    I am using PyTorch version 1.0.0 and did not modify the code.

    opened by trdavidson 1
  • How to sample from latent distribution

    How to sample from latent distribution

    Hello,

    I was wondering how I can generate samples using the decoder network after training. In a VAE, I would just sample from the prior distribution z~N(0,1) and generate a data point using the decoder. In TriangularSylvesterVAE, however, I also have to provide hyperparameters lambda(x) that depend on the input. How can I sample from my latent distribution and generate samples from it?

    I am new to normalizing flows in general and would appreciate any help.

    opened by crlz182 2
Releases(v1.0.0_3.7)
  • v1.0.0_3.7(Jul 5, 2019)

    Sylvester Normalizing Flow repository compatible with Pytorch 1.0.0 and Python 3.7. Thanks to martinengelcke for taking care of this compatibility.

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0_2.7(Jul 5, 2019)

Owner
Rianne van den Berg
Senior researcher @Microsoft research Amsterdam. Formerly at Google Brain and University of Amsterdam
Rianne van den Berg
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation

[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation [Paper] Prerequisites To install requirements: pip install -r requirements.txt

Guangrui Li 84 Dec 26, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | įŽ€äŊ“中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨đŸŊ‍đŸ’ģ What? đŸ’ģ This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022