PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Overview

Generalization in Dexterous Manipulation via
Geometry-Aware Multi-Task Learning

[Project Page] [Paper]

Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1, Deepak Pathak3

1University of California, Berkeley, 2Google Brain, 3Carnegie Mellon University

This is a PyTorch implementation of our Geometry-Aware Multi-Task Policy. The codebase also includes a suite of dexterous manipulation environments with 114 diverse real-world objects built upon Gym and MuJoCo.

We show that a single generalist policy can perform in-hand manipulation of over 100 geometrically-diverse real-world objects and generalize to new objects with unseen shape or size. Interestingly, we find that multi-task learning with object point cloud representations not only generalizes better but even outperforms the single-object specialist policies on both training as well as held-out test objects.

If you find this work useful in your research, please cite using the following BibTeX:

@article{huang2021geometry,
  title={Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning},
  author={Huang, Wenlong and Mordatch, Igor and Abbeel, Pieter and Pathak, Deepak},
  journal={arXiv preprint arXiv:2111.03062},
  year={2021}
}

Setup

Requirements

Setup Instructions

git clone https://github.com/huangwl18/geometry-dex.git
cd geometry-dex/
conda create --name geometry-dex-env python=3.6.9
conda activate geometry-dex-env
pip install --upgrade pip
pip install -r requirements.txt
bash install-baselines.sh

Running Code

Below are some flags and parameters for run_ddpg.py that you may find useful for reference:

Flags and Parameters Description
--expID <INT> Experiment ID
--train_names <List of STRING> list of environments for training; separated by space
--test_names <List of STRING> list of environments for zero-shot testing; separated by space
--point_cloud Use geometry-aware policy
--pointnet_load_path <INT> Experiment ID from which to load the pre-trained Pointnet; required for --point_cloud
--video_count <INT> Number of videos to generate for each env per cycle; only up to 1 is currently supported; 0 to disable
--n_test_rollouts <INT> Total number of collected rollouts across all train + test envs for each evaluation run; should be multiple of len(train_names) + len(test_names)
--num_rollouts <INT> Total number of collected rollouts across all train envs for 1 training cycle; should be multiple of len(train_names)
--num_parallel_envs <INT> Number of parallel envs to create for vec_env; should be multiple of len(train_names)
--chunk_size <INT> Number of parallel envs asigned to each worker in SubprocChunkVecEnv; 0 to disable and use SubprocVecEnv
--num_layers <INT> Number of layers in MLP for all policies
--width <INT> Width of each layer in MLP for all policies
--seed <INT> seed for Gym, PyTorch and NumPy
--eval Perform only evaluation using latest checkpoint
--load_path <INT> Experiment ID from which to load the checkpoint for DDPG; required for --eval

The code also uses WandB. You may wish to run wandb login in terminal to record to your account or choose to run anonymously.

WARNING: Due to the large number of total environments, generating videos during training can be slow and memory intensive. You may wish to train the policy without generating videos by passing video_count=0. After training completes, simply run run_ddpg.py with flags --eval and --video_count=1 to visualize the policy. See example below.

Training

To train Vanilla Multi-Task DDPG policy:

python run_ddpg.py --expID 1 --video_count 0 --n_cycles 40000 --chunk 10

To train Geometry-Aware Multi-Task DDPG policy, first pretrain PointNet encoder:

python train_pointnet.py --expID 2

Then train the policy:

python run_ddpg.py --expID 3 --video_count 0 --n_cycles 40000 --chunk 10 --point_cloud --pointnet_load_path 2 --no_save_buffer

Note we don't save replay buffer here because it is slow as it contains sampled point clouds. If you wish to resume training in the future, do not pass --no_save_buffer above.

Evaluation / Visualization

To evaluate a trained policy and generate video visualizations, run the same command used to train the policy but with additional flags --eval --video_count=<VIDEO_COUNT> --load_path=<LOAD_EXPID>. Replace <VIDEO_COUNT> with 1 if you wish to enable visualization and 0 otherwise. Replace <LOAD_EXPID> with the Experiment ID of the trained policy. For a Geometry-Aware Multi-Task DDPG policy trained using above command, run the following for evaluation and visualization:

python run_ddpg.py --expID 4 --video_count 1 --n_cycles 40000 --chunk 10 --point_cloud --pointnet_load_path 2 --no_save_buffer --eval --load_path 3

Trained Models

We will be releasing trained model files for our Geometry-Aware Policy and single-task oracle policies for each individual object. Stay tuned! Early access can be requested via email.

Provided Environments

Training Envs

e_toy_airplane

knife

flat_screwdriver

elephant

apple

scissors

i_cups

cup

foam_brick

pudding_box

wristwatch

padlock

power_drill

binoculars

b_lego_duplo

ps_controller

mouse

hammer

f_lego_duplo

piggy_bank

can

extra_large_clamp

peach

a_lego_duplo

racquetball

tuna_fish_can

a_cups

pan

strawberry

d_toy_airplane

wood_block

small_marker

sugar_box

ball

torus

i_toy_airplane

chain

j_cups

c_toy_airplane

airplane

nine_hole_peg_test

water_bottle

c_cups

medium_clamp

large_marker

h_cups

b_colored_wood_blocks

j_lego_duplo

f_toy_airplane

toothbrush

tennis_ball

mug

sponge

k_lego_duplo

phillips_screwdriver

f_cups

c_lego_duplo

d_marbles

d_cups

camera

d_lego_duplo

golf_ball

k_toy_airplane

b_cups

softball

wine_glass

chips_can

cube

master_chef_can

alarm_clock

gelatin_box

h_lego_duplo

baseball

light_bulb

banana

rubber_duck

headphones

i_lego_duplo

b_toy_airplane

pitcher_base

j_toy_airplane

g_lego_duplo

cracker_box

orange

e_cups
Test Envs

rubiks_cube

dice

bleach_cleanser

pear

e_lego_duplo

pyramid

stapler

flashlight

large_clamp

a_toy_airplane

tomato_soup_can

fork

cell_phone

m_lego_duplo

toothpaste

flute

stanford_bunny

a_marbles

potted_meat_can

timer

lemon

utah_teapot

train

g_cups

l_lego_duplo

bowl

door_knob

mustard_bottle

plum

Acknowledgement

The code is adapted from this open-sourced implementation of DDPG + HER. The object meshes are from the YCB Dataset and the ContactDB Dataset. We use SubprocChunkVecEnv from this pull request of OpenAI Baselines to speedup vectorized environments.

Owner
Wenlong Huang
Undergraduate Student @ UC Berkeley
Wenlong Huang
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022