PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Overview

Generalization in Dexterous Manipulation via
Geometry-Aware Multi-Task Learning

[Project Page] [Paper]

Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1, Deepak Pathak3

1University of California, Berkeley, 2Google Brain, 3Carnegie Mellon University

This is a PyTorch implementation of our Geometry-Aware Multi-Task Policy. The codebase also includes a suite of dexterous manipulation environments with 114 diverse real-world objects built upon Gym and MuJoCo.

We show that a single generalist policy can perform in-hand manipulation of over 100 geometrically-diverse real-world objects and generalize to new objects with unseen shape or size. Interestingly, we find that multi-task learning with object point cloud representations not only generalizes better but even outperforms the single-object specialist policies on both training as well as held-out test objects.

If you find this work useful in your research, please cite using the following BibTeX:

@article{huang2021geometry,
  title={Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning},
  author={Huang, Wenlong and Mordatch, Igor and Abbeel, Pieter and Pathak, Deepak},
  journal={arXiv preprint arXiv:2111.03062},
  year={2021}
}

Setup

Requirements

Setup Instructions

git clone https://github.com/huangwl18/geometry-dex.git
cd geometry-dex/
conda create --name geometry-dex-env python=3.6.9
conda activate geometry-dex-env
pip install --upgrade pip
pip install -r requirements.txt
bash install-baselines.sh

Running Code

Below are some flags and parameters for run_ddpg.py that you may find useful for reference:

Flags and Parameters Description
--expID <INT> Experiment ID
--train_names <List of STRING> list of environments for training; separated by space
--test_names <List of STRING> list of environments for zero-shot testing; separated by space
--point_cloud Use geometry-aware policy
--pointnet_load_path <INT> Experiment ID from which to load the pre-trained Pointnet; required for --point_cloud
--video_count <INT> Number of videos to generate for each env per cycle; only up to 1 is currently supported; 0 to disable
--n_test_rollouts <INT> Total number of collected rollouts across all train + test envs for each evaluation run; should be multiple of len(train_names) + len(test_names)
--num_rollouts <INT> Total number of collected rollouts across all train envs for 1 training cycle; should be multiple of len(train_names)
--num_parallel_envs <INT> Number of parallel envs to create for vec_env; should be multiple of len(train_names)
--chunk_size <INT> Number of parallel envs asigned to each worker in SubprocChunkVecEnv; 0 to disable and use SubprocVecEnv
--num_layers <INT> Number of layers in MLP for all policies
--width <INT> Width of each layer in MLP for all policies
--seed <INT> seed for Gym, PyTorch and NumPy
--eval Perform only evaluation using latest checkpoint
--load_path <INT> Experiment ID from which to load the checkpoint for DDPG; required for --eval

The code also uses WandB. You may wish to run wandb login in terminal to record to your account or choose to run anonymously.

WARNING: Due to the large number of total environments, generating videos during training can be slow and memory intensive. You may wish to train the policy without generating videos by passing video_count=0. After training completes, simply run run_ddpg.py with flags --eval and --video_count=1 to visualize the policy. See example below.

Training

To train Vanilla Multi-Task DDPG policy:

python run_ddpg.py --expID 1 --video_count 0 --n_cycles 40000 --chunk 10

To train Geometry-Aware Multi-Task DDPG policy, first pretrain PointNet encoder:

python train_pointnet.py --expID 2

Then train the policy:

python run_ddpg.py --expID 3 --video_count 0 --n_cycles 40000 --chunk 10 --point_cloud --pointnet_load_path 2 --no_save_buffer

Note we don't save replay buffer here because it is slow as it contains sampled point clouds. If you wish to resume training in the future, do not pass --no_save_buffer above.

Evaluation / Visualization

To evaluate a trained policy and generate video visualizations, run the same command used to train the policy but with additional flags --eval --video_count=<VIDEO_COUNT> --load_path=<LOAD_EXPID>. Replace <VIDEO_COUNT> with 1 if you wish to enable visualization and 0 otherwise. Replace <LOAD_EXPID> with the Experiment ID of the trained policy. For a Geometry-Aware Multi-Task DDPG policy trained using above command, run the following for evaluation and visualization:

python run_ddpg.py --expID 4 --video_count 1 --n_cycles 40000 --chunk 10 --point_cloud --pointnet_load_path 2 --no_save_buffer --eval --load_path 3

Trained Models

We will be releasing trained model files for our Geometry-Aware Policy and single-task oracle policies for each individual object. Stay tuned! Early access can be requested via email.

Provided Environments

Training Envs

e_toy_airplane

knife

flat_screwdriver

elephant

apple

scissors

i_cups

cup

foam_brick

pudding_box

wristwatch

padlock

power_drill

binoculars

b_lego_duplo

ps_controller

mouse

hammer

f_lego_duplo

piggy_bank

can

extra_large_clamp

peach

a_lego_duplo

racquetball

tuna_fish_can

a_cups

pan

strawberry

d_toy_airplane

wood_block

small_marker

sugar_box

ball

torus

i_toy_airplane

chain

j_cups

c_toy_airplane

airplane

nine_hole_peg_test

water_bottle

c_cups

medium_clamp

large_marker

h_cups

b_colored_wood_blocks

j_lego_duplo

f_toy_airplane

toothbrush

tennis_ball

mug

sponge

k_lego_duplo

phillips_screwdriver

f_cups

c_lego_duplo

d_marbles

d_cups

camera

d_lego_duplo

golf_ball

k_toy_airplane

b_cups

softball

wine_glass

chips_can

cube

master_chef_can

alarm_clock

gelatin_box

h_lego_duplo

baseball

light_bulb

banana

rubber_duck

headphones

i_lego_duplo

b_toy_airplane

pitcher_base

j_toy_airplane

g_lego_duplo

cracker_box

orange

e_cups
Test Envs

rubiks_cube

dice

bleach_cleanser

pear

e_lego_duplo

pyramid

stapler

flashlight

large_clamp

a_toy_airplane

tomato_soup_can

fork

cell_phone

m_lego_duplo

toothpaste

flute

stanford_bunny

a_marbles

potted_meat_can

timer

lemon

utah_teapot

train

g_cups

l_lego_duplo

bowl

door_knob

mustard_bottle

plum

Acknowledgement

The code is adapted from this open-sourced implementation of DDPG + HER. The object meshes are from the YCB Dataset and the ContactDB Dataset. We use SubprocChunkVecEnv from this pull request of OpenAI Baselines to speedup vectorized environments.

Owner
Wenlong Huang
Undergraduate Student @ UC Berkeley
Wenlong Huang
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022