Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

Overview

A method to solve the Higgs boson challenge using Least Squares - Novae

This project is the Project 1 of EPFL CS-433 Machine Learning. The project is the same as the Higgs Boson Machine Learning Challenge posted on Kaggle. The dataset and the detailed description can also be found in the GitHub repository of the course.

Team name: Novae

Team members: Giacomo Orsi, Vittorio Rossi, Chun-Tso Tsai

About the Project

The task of this project is to train a model based on the provided train.csv to have the best prediction on the data given in test.csv or any other general case.

We built our model for the problem using regularized linear regression after applying some data cleaning and features engineering techniques. A report describing our approach and our results can be found in the file report.pdf. In the end, we obtained an accuracy of 0.836 and an F1 score of 0.751 on the test.csv dataset.

Instructions

  • The project runs under Python 3.8 and requires NumPy=1.19.
  • Please make sure to place train.csv and test.csv inside the data folder. Those files can be downloaded here.
  • Go to the script/ folder and execute run.py. A model will be trained with the given hyper-parameters and predictions for the test dataset will be outputed in the file out.csv.

Modules

implementations.py

Contains the implementations of different learning algorithms. Including

  • Least squares linear regression
    • least_squares: Direct computation from linear equations.
    • least_squares_GD: Gradient descent.
    • least_squares_SGD: Stochastic gradient descent.
    • ridge_regression: Regularized linear regression from direct computation.
  • Logistic regression
    • logistic_regression: Gradient descent
    • reg_logistic_regression: Gradient descent with regularization.

There are also some helper functions in this file to facilitate the above functions.

data_processing.py

Calls the following files to process the data.

  • data_cleaning.py: Contains functions used to
    1. Categorize data into subgroups.
    2. Replace missing values with the median.
    3. Standardize the features.
  • feature_engineering.py: Contains functions used to generate our interpretable features.

run.py

Generates the submission .csv file based on the data of test.csv stored in the folder data/. Our optimized model is also defined in this file.

Some helper Functions

  • models.py: Create the models for predicting the labels for new data points without true labels.
  • expansions.py: Contains a function to apply polynomial expansion to our features to add extra degrees of freedom for our models.
  • proj1_helpers.py: Contains functions which loads the .csv files as training or testing data, and create the .csv file for submission.
  • cross_validation.py: Contains a function to build the index for k-fold cross_validation.
  • disk_helper.py: Save/load the NumPy array to disk for further usage. Useful for saving hyper-parameters when trying a long training process.

Notebook

It is possible to use the Jupyter notebook project_notebook.ipynb located in the scripts folder to train the best hyper-parameters for the model. In the notebook it is possible to cross-validate a logistic and a least square regression model over given lambdas and degrees.

Owner
Giacomo Orsi
CS Student at EPFL. Previously at University of Bologna
Giacomo Orsi
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022