Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

Overview

DeepMTA_PyTorch

Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Chen, Jin Tang, Bin Luo, Yaowei Wang, Yonghong Tian, Feng Wu, IEEE Transactions on Circuits and Systems for Video Technology (T-CSVT 2021) [Paper] [Project]

Abstract:

Most of the existing single object trackers track the target in a unitary local search window, making them particularly vulnerable to challenging factors such as heavy occlusions and out-of-view movements. Despite the attempts to further incorporate global search, prevailing mechanisms that cooperate local and global search are relatively static, thus are still sub-optimal for improving tracking performance. By further studying the local and global search results, we raise a question: can we allow more dynamics for cooperating both results? In this paper, we propose to introduce more dynamics by devising a dynamic attention-guided multi-trajectory tracking strategy. In particular, we construct dynamic appearance model that contains multiple target templates, each of which provides its own attention for locating the target in the new frame. Guided by different attention, we maintain diversified tracking results for the target to build multi-trajectory tracking history, allowing more candidates to represent the true target trajectory. After spanning the whole sequence, we introduce a multi-trajectory selection network to find the best trajectory that deliver improved tracking performance. Extensive experimental results show that our proposed tracking strategy achieves compelling performance on various large-scale tracking benchmarks.

Our Proposed Approach:

fig-1

Install:

git clone https://github.com/wangxiao5791509/DeepMTA_PyTorch
cd DeepMTA_TCSVT_project

# create the conda environment
conda env create -f environment.yml
conda activate deepmta

# build the vot toolkits
bash benchmark/make_toolkits.sh

Download Dataset and Model:

download pre-trained Traj-Evaluation-Network [Onedrive] and Dynamic-TANet-Model [Onedrive]

get the dataset OTB2015, GOT-10k, LaSOT, UAV123, UAV20L, OxUvA from [List].

Download TNL2K dataset (published on CVPR 2021, 1300/700 for train and test subset) from: https://sites.google.com/view/langtrackbenchmark/

Train:

  1. you can directly use the pre-trained tracking model of THOR [github];

  2. train Dynamic Target-aware Attention:

cd ~/DeepMTA_TCSVT_project/trackers/dcynet_modules_adaptis/ 
python train.py
  1. train Trajectory Evaluation Network:
python train_traj_measure_net.py

Tracking:

take got-10k and LaSOT dataset as the examples:

python testing.py -d GOT10k -t SiamRPN --lb_type ensemble

python testing.py -d LaSOT -t SiamRPN --lb_type ensemble

Benchmark Results:

Experimental results on the compared tracking benchmarks

[OTB2015] [LaSOT] [OxUvA] [GOT-10k] [UAV123] [TNL2K]

Tracking Results:

Tracking results on LaSOT dataset.

fig-1

Tracking results on TNL2K dataset.

fig-1

Attention prediciton and Tracking Results.

fig-1 fig-1

Acknowledgement:

Our tracker is developed based on THOR which is published on BMVC-2019 [Paper] [Code]

Other related works:

  • MTP: Multi-hypothesis Tracking and Prediction for Reduced Error Propagation, Xinshuo Weng, Boris Ivanovic, and Marco Pavone [Paper] [Code]
  • D.-Y. Lee, J.-Y. Sim, and C.-S. Kim, “Multihypothesis trajectory analysis for robust visual tracking,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5088–5096. [Paper]
  • C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypothesis tracking revisited,” in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4696–4704. [Paper]

Citation:

If you find this paper useful for your research, please consider to cite our paper:

@inproceedings{wang2021deepmta,
 title={Dynamic Attention guided Multi-Trajectory Analysis for Single Object Tracking},
 author={Xiao, Wang and Zhe, Chen and Jin, Tang and Bin, Luo and Yaowei, Wang and Yonghong, Tian and Feng, Wu},
 booktitle={IEEE Transactions on Circuits and Systems for Video Technology},
 doi={10.1109/TCSVT.2021.3056684}, 
 year={2021}
}

If you have any questions about this work, please contact with me via: [email protected] or [email protected]

Owner
Xiao Wang(王逍)
Postdoc researcher at Peng Cheng Laboratory. My wechat: wangxiao5791509
Xiao Wang(王逍)
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022