DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

Related tags

Deep LearningDCT-Mask
Overview

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

This project hosts the code for implementing the DCT-MASK algorithms for instance segmentation.

[DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation] Xing Shen*, Jirui Yang*, Chunbo Wei, Bing Deng, Jianqiang Huang, Xiansheng Hua Xiaoliang Cheng, Kewei Liang

In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition(CVPR 2021)

arXiv preprint(arXiv:2011.09876)

Contributions

  • We propose a high-quality and low-complexity mask representation for instance segmentation, which encodes the high-resolution binary mask into a compact vector with discrete cosine transform.
  • With slight modifications, DCT-Mask could be integrated into most pixel-based frameworks, and achieve significant and consistent improvement on different datasets, backbones, and training schedules. Specifically, it obtains more improvements for more complex backbones and higher-quality annotations.
  • DCT-Mask does not require extra pre-processing or pre-training. It achieves high-resolution mask prediction at a speed similar to low-resolution.

Installation

Requirements

  • PyTorch ≥ 1.5 and fvcore == 0.1.1.post20200716

This implementation is based on detectron2. Please refer to INSTALL.md. for installation and dataset preparation.

Usage

The codes of this project is on projects/DCT_Mask/

Train with multiple GPUs

cd ./projects/DCT_Mask/
./train1.sh

Testing

cd ./projects/DCT_Mask/
./test1.sh

Model ZOO

Trained models on COCO

Model Backbone Schedule Multi-scale training Inference time (s/im) AP (minival) Link
DCT-Mask R-CNN R50 1x Yes 0.0465 36.5 download(Fetch code: xpdm)
DCT-Mask R-CNN R101 3x Yes 0.0595 39.9 download(Fetch code: 7q6x)
DCT-Mask R-CNN RX101 3x Yes 0.1049 41.2 download(Fetch code: ufw2)
Casecade DCT-Mask R-CNN R50 1x Yes 0.0630 37.5 download(Fetch code: yqxp)
Casecade DCT-Mask R-CNN R101 3x Yes 0.0750 40.8 download(Fetch code: r8xv)
Casecade DCT-Mask R-CNN RX101 3x Yes 0.1195 42.0 download(Fetch code: pdej)

Trained models on Cityscapes

Model Data Backbone Schedule Multi-scale training AP (val) Link
DCT-Mask R-CNN Fine-Only R50 1x Yes 37.0 download(Fetch code: dn7i)
DCT-Mask R-CNN CoCo-Pretrain +Fine R50 1x Yes 39.6 download(Fetch code: ntqf)

Notes

  • We observe about 0.2 AP noise in COCO.
  • High variance observed in CityScapes when trained on fine annotations only. We report the median of 5 runs AP in the article (i.e. 35.6), while in this repo we report the best results (37.0).
  • Initialized from COCO pre-training will reduce the variance on CityScapes as well as increasing mask AP.
  • The inference time is measured on single GPU with batchsize 1. All GPUs are NVIDIA V100.
  • Lvis 0.5 is used for evaluation.

Contributing to the project

Any pull requests or issues are welcome.

If there is any problem with this project, please contact Xing Shen.

Citations

Please consider citing our papers in your publications if the project helps your research.

License

  • MIT License.
Owner
Alibaba Cloud
More Than Just Cloud
Alibaba Cloud
Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Shubham Tulsiani 24 Dec 17, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide.

SARS-CoV-2 processing requests Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide. Prerequisites This autom

useGalaxy.eu 17 Aug 13, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022