Symbolic Music Generation with Diffusion Models

Overview

Symbolic Music Generation with Diffusion Models

Supplementary code release for our work Symbolic Music Generation with Diffusion Models.

Installation

All code is written in Python 3 (Anaconda recommended). To install the dependencies:

pip install -r requirements.txt

A copy of the Magenta codebase is required for access to MusicVAE and related components. Installation instructions can be found on the Magenta public repository. You will also need to download pretrained MusicVAE checkpoints. For our experiments, we use the 2-bar melody model.

Datasets

We use the Lakh MIDI Dataset to train our models. Follow these instructions to download and build the Lakh MIDI Dataset.

To encode the Lakh dataset with MusicVAE, use scripts/generate_song_data_beam.py:

python scripts/generate_song_data_beam.py \
  --checkpoint=/path/to/musicvae-ckpt \
  --input=/path/to/lakh_tfrecords \
  --output=/path/to/encoded_tfrecords

To preprocess and generate fixed-length latent sequences for training diffusion and autoregressive models, refer to scripts/transform_encoded_data.py:

python scripts/transform_encoded_data.py \
  --encoded_data=/path/to/encoded_tfrecords \
  --output_path =/path/to/preprocess_tfrecords \
  --mode=sequences \
  --context_length=32

Training

Diffusion

python train_ncsn.py --flagfile=configs/ddpm-mel-32seq-512.cfg

TransformerMDN

python train_mdn.py --flagfile=configs/mdn-mel-32seq-512.cfg

Sampling and Generation

Diffusion

python sample_ncsn.py \
  --flagfile=configs/ddpm-mel-32seq-512.cfg \
  --sample_seed=42 \
  --sample_size=1000 \
  --sampling_dir=/path/to/latent-samples 

TransformerMDN

python sample_ncsn.py \
  --flagfile=configs/mdn-mel-32seq-512.cfg \
  --sample_seed=42 \
  --sample_size=1000 \
  --sampling_dir=/path/to/latent-samples 

Decoding sequences

To convert sequences of embeddings (generated by diffusion or TransformerMDN models) to sequences of MIDI events, refer to scripts/sample_audio.py.

python scripts/sample_audio.py
  --input=/path/to/latent-samples/[ncsn|mdn] \
  --output=/path/to/audio-midi \
  --n_synth=1000 \
  --include_wav=True

Citing

If you use this code please cite it as:

@inproceedings{
  mittal2021symbolicdiffusion,
  title={Symbolic Music Generation with Diffusion Models},
  author={Gautam Mittal and Jesse Engel and Curtis Hawthorne and Ian Simon},
  booktitle={Proceedings of the 22nd International Society for Music Information Retrieval Conference},
  year={2021},
  url={https://archives.ismir.net/ismir2021/paper/000058.pdf}
}

Note

This is not an official Google product.

Owner
Magenta
An open source research project exploring the role of machine learning as a tool in the creative process.
Magenta
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022