Symbolic Music Generation with Diffusion Models

Overview

Symbolic Music Generation with Diffusion Models

Supplementary code release for our work Symbolic Music Generation with Diffusion Models.

Installation

All code is written in Python 3 (Anaconda recommended). To install the dependencies:

pip install -r requirements.txt

A copy of the Magenta codebase is required for access to MusicVAE and related components. Installation instructions can be found on the Magenta public repository. You will also need to download pretrained MusicVAE checkpoints. For our experiments, we use the 2-bar melody model.

Datasets

We use the Lakh MIDI Dataset to train our models. Follow these instructions to download and build the Lakh MIDI Dataset.

To encode the Lakh dataset with MusicVAE, use scripts/generate_song_data_beam.py:

python scripts/generate_song_data_beam.py \
  --checkpoint=/path/to/musicvae-ckpt \
  --input=/path/to/lakh_tfrecords \
  --output=/path/to/encoded_tfrecords

To preprocess and generate fixed-length latent sequences for training diffusion and autoregressive models, refer to scripts/transform_encoded_data.py:

python scripts/transform_encoded_data.py \
  --encoded_data=/path/to/encoded_tfrecords \
  --output_path =/path/to/preprocess_tfrecords \
  --mode=sequences \
  --context_length=32

Training

Diffusion

python train_ncsn.py --flagfile=configs/ddpm-mel-32seq-512.cfg

TransformerMDN

python train_mdn.py --flagfile=configs/mdn-mel-32seq-512.cfg

Sampling and Generation

Diffusion

python sample_ncsn.py \
  --flagfile=configs/ddpm-mel-32seq-512.cfg \
  --sample_seed=42 \
  --sample_size=1000 \
  --sampling_dir=/path/to/latent-samples 

TransformerMDN

python sample_ncsn.py \
  --flagfile=configs/mdn-mel-32seq-512.cfg \
  --sample_seed=42 \
  --sample_size=1000 \
  --sampling_dir=/path/to/latent-samples 

Decoding sequences

To convert sequences of embeddings (generated by diffusion or TransformerMDN models) to sequences of MIDI events, refer to scripts/sample_audio.py.

python scripts/sample_audio.py
  --input=/path/to/latent-samples/[ncsn|mdn] \
  --output=/path/to/audio-midi \
  --n_synth=1000 \
  --include_wav=True

Citing

If you use this code please cite it as:

@inproceedings{
  mittal2021symbolicdiffusion,
  title={Symbolic Music Generation with Diffusion Models},
  author={Gautam Mittal and Jesse Engel and Curtis Hawthorne and Ian Simon},
  booktitle={Proceedings of the 22nd International Society for Music Information Retrieval Conference},
  year={2021},
  url={https://archives.ismir.net/ismir2021/paper/000058.pdf}
}

Note

This is not an official Google product.

Owner
Magenta
An open source research project exploring the role of machine learning as a tool in the creative process.
Magenta
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022