Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

Overview

HiT-GAN Official TensorFlow Implementation

HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GANs). It achieves state-of-the-art performance for high-resolution image synthesis. Please check our NeurIPS 2021 paper "Improved Transformer for High-Resolution GANs" for more details.

This implementation is based on TensorFlow 2.x. We use tf.keras layers for building the model and use tf.data for our input pipeline. The model is trained using a custom training loop with tf.distribute on multiple TPUs/GPUs.

Environment setup

It is recommended to run distributed training to train our model with TPUs and evaluate it with GPUs. The code is compatible with TensorFlow 2.x. See requirements.txt for all prerequisites, and you can also install them using the following command.

pip install -r requirements.txt

ImageNet

At the first time, download ImageNet following tensorflow_datasets instruction from the official guide.

Train on ImageNet

To pretrain the model on ImageNet with Cloud TPUs, first check out the Google Cloud TPU tutorial for basic information on how to use Google Cloud TPUs.

Once you have created virtual machine with Cloud TPUs, and pre-downloaded the ImageNet data for tensorflow_datasets, please set the following enviroment variables:

TPU_NAME=<tpu-name>
STORAGE_BUCKET=gs://<storage-bucket>
DATA_DIR=$STORAGE_BUCKET/<path-to-tensorflow-dataset>
MODEL_DIR=$STORAGE_BUCKET/<path-to-store-checkpoints>

The following command can be used to train a model on ImageNet (which reflects the default hyperparameters in our paper) on TPUv2 4x4:

python run.py --mode=train --dataset=imagenet2012 \
  --train_batch_size=256 --train_steps=1000000 \
  --image_crop_size=128 --image_crop_proportion=0.875 \
  --save_every_n_steps=2000 \
  --latent_dim=256 --generator_lr=0.0001 \
  --discriminator_lr=0.0001 --channel_multiplier=1 \
  --data_dir=$DATA_DIR --model_dir=$MODEL_DIR \
  --use_tpu=True --master=$TPU_NAME

To train the model on ImageNet with multiple GPUs, try the following command:

python run.py --mode=train --dataset=imagenet2012 \
  --train_batch_size=256 --train_steps=1000000 \
  --image_crop_size=128 --image_crop_proportion=0.875 \
  --save_every_n_steps=2000 \
  --latent_dim=256 --generator_lr=0.0001 \
  --discriminator_lr=0.0001 --channel_multiplier=1 \
  --data_dir=$DATA_DIR --model_dir=$MODEL_DIR \
  --use_tpu=False --use_ema_model=False

Please set train_batch_size according to the number of GPUs for training. Note that storing Exponential Moving Average (EMA) models is not supported with GPUs currently (--use_ema_model=False), so training with GPUs will lead to slight performance drop.

Evaluate on ImageNet

Run the following command to evaluate the model on GPUs:

python run.py --mode=eval --dataset=imagenet2012 \
  --eval_batch_size=128 --train_steps=1000000 \
  --image_crop_size=128 --image_crop_proportion=0.875 \
  --latent_dim=256 --channel_multiplier=1 \
  --data_dir=$DATA_DIR --model_dir=$MODEL_DIR \
  --use_tpu=False --use_ema_model=True

This command runs models with 8 P100 GPUs. Please set eval_batch_size according to the number of GPUs for evaluation. Please also note that train_steps and use_ema_model should be set according to the values used for training.

CelebA-HQ

At the first time, download CelebA-HQ following tensorflow_datasets instruction from the official guide.

Train on CelebA-HQ

The following command can be used to train a model on CelebA-HQ (which reflects the default hyperparameters used for the resolution of 256 in our paper) on TPUv2 4x4:

python run.py --mode=train --dataset=celeb_a_hq/256 \
  --train_batch_size=256 --train_steps=250000 \
  --image_crop_size=256 --image_crop_proportion=1.0 \
  --save_every_n_steps=1000 \
  --latent_dim=512 --generator_lr=0.00005 \
  --discriminator_lr=0.00005 --channel_multiplier=2 \
  --use_consistency_regularization=True \
  --data_dir=$DATA_DIR --model_dir=$MODEL_DIR \
  --use_tpu=True --master=$TPU_NAME

Evaluate on CelebA-HQ

Run the following command to evaluate the model on 8 P100 GPUs:

python run.py --mode=eval --dataset=celeb_a_hq/256 \
  --eval_batch_size=128 --train_steps=250000 \
  --image_crop_size=256 --image_crop_proportion=1.0 \
  --latent_dim=512 --channel_multiplier=2 \
  --data_dir=$DATA_DIR --model_dir=$MODEL_DIR \
  --use_tpu=False --use_ema_model=True

FFHQ

At the first time, download the tfrecords of FFHQ from the official site and put them into $DATA_DIR.

Train on FFHQ

The following command can be used to train a model on FFHQ (which reflects the default hyperparameters used for the resolution of 256 in our paper) on TPUv2 4x4:

python run.py --mode=train --dataset=ffhq/256 \
  --train_batch_size=256 --train_steps=500000 \
  --image_crop_size=256 --image_crop_proportion=1.0 \
  --save_every_n_steps=1000 \
  --latent_dim=512 --generator_lr=0.00005 \
  --discriminator_lr=0.00005 --channel_multiplier=2 \
  --use_consistency_regularization=True \
  --data_dir=$DATA_DIR --model_dir=$MODEL_DIR \
  --use_tpu=True --master=$TPU_NAME

Evaluate on FFHQ

Run the following command to evaluate the model on 8 P100 GPUs:

python run.py --mode=eval --dataset=ffhq/256 \
  --eval_batch_size=128 --train_steps=500000 \
  --image_crop_size=256 --image_crop_proportion=1.0 \
  --latent_dim=512 --channel_multiplier=2 \
  --data_dir=$DATA_DIR --model_dir=$MODEL_DIR \
  --use_tpu=False --use_ema_model=True

Cite

@inproceedings{zhao2021improved,
  title = {Improved Transformer for High-Resolution {GANs}},
  author = {Long Zhao and Zizhao Zhang and Ting Chen and Dimitris Metaxas abd Han Zhang},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2021}
}

Disclaimer

This is not an officially supported Google product.

TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbßhl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022