这是一个yolox-keras的源码,可以用于训练自己的模型。

Overview

YOLOX:You Only Look Once目标检测模型在Keras当中的实现


目录

  1. 性能情况 Performance
  2. 实现的内容 Achievement
  3. 所需环境 Environment
  4. 小技巧的设置 TricksSet
  5. 文件下载 Download
  6. 训练步骤 How2train
  7. 预测步骤 How2predict
  8. 评估步骤 How2eval
  9. 参考资料 Reference

性能情况

训练数据集 权值文件名称 测试数据集 输入图片大小 mAP 0.5:0.95 mAP 0.5
COCO-Train2017 yolox_s.h5 COCO-Val2017 640x640 39.2 58.7
COCO-Train2017 yolox_m.h5 COCO-Val2017 640x640 46.1 65.2
COCO-Train2017 yolox_l.h5 COCO-Val2017 640x640 49.3 68.1
COCO-Train2017 yolox_x.h5 COCO-Val2017 640x640 50.5 69.2

实现的内容

  • 主干特征提取网络:使用了Focus网络结构。
  • 分类回归层:Decoupled Head,在YoloX中,Yolo Head被分为了分类回归两部分,最后预测的时候才整合在一起。
  • 训练用到的小技巧:Mosaic数据增强、CIOU(原版是IOU和GIOU,CIOU效果类似,都是IOU系列的,甚至更新一些)、学习率余弦退火衰减。
  • Anchor Free:不使用先验框
  • SimOTA:为不同大小的目标动态匹配正样本。

所需环境

tensorflow-gpu==1.13.1
keras==2.1.5

小技巧的设置

在train.py文件下:
1、mosaic参数可用于控制是否实现Mosaic数据增强。
2、Cosine_scheduler可用于控制是否使用学习率余弦退火衰减。
3、label_smoothing可用于控制是否Label Smoothing平滑。

文件下载

训练所需的权值可在百度网盘中下载。
链接: https://pan.baidu.com/s/1o14Vi-CzZEaz9hic_OPZCQ 提取码: 4kc2

VOC数据集下载地址如下:
VOC2007+2012训练集
链接: https://pan.baidu.com/s/16pemiBGd-P9q2j7dZKGDFA 提取码: eiw9

VOC2007测试集
链接: https://pan.baidu.com/s/1BnMiFwlNwIWG9gsd4jHLig 提取码: dsda

训练步骤

a、数据集的准备

1、本文使用VOC格式进行训练,训练前需要自己制作好数据集,如果没有自己的数据集,可以通过Github连接下载VOC12+07的数据集尝试下。
2、训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
3、训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。

b、数据集的预处理

1、训练数据集时,在model_data文件夹下建立一个cls_classes.txt,里面写所需要区分的类别。
2、设置根目录下的voc_annotation.py里的一些参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt,即:

classes_path = 'model_data/cls_classes.txt'

model_data/cls_classes.txt文件内容为:

cat
dog
...

3、设置完成后运行voc_annotation.py,生成训练所需的2007_train.txt以及2007_val.txt。

c、开始网络训练

1、通过voc_annotation.py,我们已经生成了2007_train.txt以及2007_val.txt,此时我们可以开始训练了。
2、设置根目录下的train.py里的一些参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt,设置方式与b、数据集的预处理类似。训练自己的数据集必须要修改!
3、设置完成后运行train.py开始训练了,在训练多个epoch后,权值会生成在logs文件夹中。
4、训练的参数较多,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。

d、训练结果预测

1、训练结果预测需要用到两个文件,分别是yolo.py和predict.py。
2、设置根目录下的yolo.py里的一些参数。第一次预测可以仅修改model_path以及classes_path。训练自己的数据集必须要修改。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。
3、设置完成后运行predict.py开始预测了,具体细节查看预测步骤。
4、预测的参数较多,大家可以在下载库后仔细看注释,其中最重要的部分依然是yolo.py里的model_path以及classes_path。

预测步骤

a、使用预训练权重

1、下载完库后解压,在百度网盘下载各个权值,放入model_data,默认使用yolox_s.h5,其它可调整,运行predict.py,输入

img/street.jpg

2、在predict.py里面进行设置可以进行video视频检测、fps测试、批量文件测试与保存。

b、使用自己训练的权重

1、按照训练步骤训练。
2、在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类

_defaults = {
    #--------------------------------------------------------------------------#
    #   使用自己训练好的模型进行预测一定要修改model_path和classes_path!
    #   model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
    #   如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
    #--------------------------------------------------------------------------#
    "model_path"        : 'model_data/yolox_s.h5',
    "classes_path"      : 'model_data/coco_classes.txt',
    #---------------------------------------------------------------------#
    #   输入图片的大小,必须为32的倍数。
    #---------------------------------------------------------------------#
    "input_shape"       : [640, 640],
    #---------------------------------------------------------------------#
    #   所使用的YoloX的版本。s、m、l、x
    #---------------------------------------------------------------------#
    "phi"               : 's',
    #---------------------------------------------------------------------#
    #   只有得分大于置信度的预测框会被保留下来
    #---------------------------------------------------------------------#
    "confidence"        : 0.5,
    #---------------------------------------------------------------------#
    #   非极大抑制所用到的nms_iou大小
    #---------------------------------------------------------------------#
    "nms_iou"           : 0.3,
    "max_boxes"         : 100,
    #---------------------------------------------------------------------#
    #   该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
    #   在多次测试后,发现关闭letterbox_image直接resize的效果更好
    #---------------------------------------------------------------------#
    "letterbox_image"   : True,
}

3、运行predict.py,输入

img/street.jpg

4、在predict.py里面进行设置可以进行video视频检测、fps测试、批量文件测试与保存。

评估步骤

1、本文使用VOC格式进行评估。
2、划分测试集,如果在训练前已经运行过voc_annotation.py文件,代码会自动将数据集划分成训练集、验证集和测试集。
3、如果想要修改测试集的比例,可以修改voc_annotation.py文件下的trainval_percent。trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1。train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1。
4、设置根目录下的yolo.py里的一些参数。第一次评估可以仅修改model_path以及classes_path。训练自己的数据集必须要修改。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。
5、设置根目录下的get_map.py里的一些参数。第一次评估可以仅修改classes_path,classes_path用于指向检测类别所对应的txt,评估自己的数据集必须要修改。与yolo.py中分开设置的原因是可以让使用者自己选择评估什么类别,而非所有类别。
6、运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。

Reference

https://github.com/Megvii-BaseDetection/YOLOX

You might also like...
Comments
  • using yolox_keras as backbone/pretrained model wanted

    using yolox_keras as backbone/pretrained model wanted

    many will try using different backbones like yolo/VGG/ENet for their models and it will be usefull if you have a pretrained model that doesn't include top layers for them. I also tried to find the saved model as it has to be in this directory :'model_data/yolox_s.h5' but it isn't if you still have the model I'll appreciate to upload it again. because I tried to train the model but found some issues with utils and loading data. Thanks

    opened by asparsa 1
  • tf与keras兼容问题报错

    tf与keras兼容问题报错

    !python predict.py 报错如下: model_data/yolox_s.h5 model, and classes loaded. Traceback (most recent call last): File "predict.py", line 14, in yolo = YOLO() File "/content/yolox-keras/yolo.py", line 82, in init self.boxes, self.scores, self.classes = self.generate() File "/content/yolox-keras/yolo.py", line 106, in generate letterbox_image = self.letterbox_image File "/content/yolox-keras/utils/utils_bbox.py", line 73, in DecodeBox grid_x, grid_y = tf.meshgrid(K.arange(hw[i][1]), K.arange(hw[i][0])) File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/util/traceback_utils.py", line 153, in error_handler raise e.with_traceback(filtered_tb) from None File "/usr/local/lib/python3.7/dist-packages/keras/layers/core/tf_op_layer.py", line 107, in handle return TFOpLambda(op)(*args, **kwargs) File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 67, in error_handler raise e.with_traceback(filtered_tb) from None File "/usr/local/lib/python3.7/dist-packages/keras/backend.py", line 3510, in arange if stop is None and start < 0: tensorflow.python.framework.errors_impl.OperatorNotAllowedInGraphError: Exception encountered when calling layer "tf.keras.backend.arange" (type TFOpLambda).

    using a tf.Tensor as a Python bool is not allowed in Graph execution. Use Eager execution or decorate this function with @tf.function.

    Call arguments received: • start=tf.Tensor(shape=(), dtype=int32) • stop=None • step=1 • dtype=int32

    修改:utils.utils_bbox.DecodeBox如下: @tf.function def DecodeBox()

    接着报错: model_data/yolox_s.h5 model, and classes loaded. Traceback (most recent call last): File "predict.py", line 14, in yolo = YOLO() File "/content/yolox-keras/yolo.py", line 82, in init self.boxes, self.scores, self.classes = self.generate() File "/content/yolox-keras/yolo.py", line 106, in generate letterbox_image = self.letterbox_image File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/util/traceback_utils.py", line 153, in error_handler raise e.with_traceback(filtered_tb) from None File "/usr/local/lib/python3.7/dist-packages/keras/engine/keras_tensor.py", line 256, in array f'You are passing {self}, an intermediate Keras symbolic input/output, ' TypeError: You are passing KerasTensor(type_spec=TensorSpec(shape=(None, None, None, 85), dtype=tf.float32, name=None), name='concatenate_13/concat:0', description="created by layer 'concatenate_13'"), an intermediate Keras symbolic input/output, to a TF API that does not allow registering custom dispatchers, such as tf.cond, tf.function, gradient tapes, or tf.map_fn. Keras Functional model construction only supports TF API calls that do support dispatching, such as tf.math.add or tf.reshape. Other APIs cannot be called directly on symbolic Kerasinputs/outputs. You can work around this limitation by putting the operation in a custom Keras layer call and calling that layer on this symbolic input/output.

    opened by cyning911 17
Releases(v2.1)
Owner
Bubbliiiing
Bubbliiiing
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 07, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022