[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Overview

Using Unreliable Pseudo Labels

Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022.

Please refer to our project page for qualitative results.

Abstract. The crux of semi-supervised semantic segmentation is to assign adequate pseudo-labels to the pixels of unlabeled images. A common practice is to select the highly confident predictions as the pseudo ground-truth, but it leads to a problem that most pixels may be left unused due to their unreliability. We argue that every pixel matters to the model training, even its prediction is ambiguous. Intuitively, an unreliable prediction may get confused among the top classes (i.e., those with the highest probabilities), however, it should be confident about the pixel not belonging to the remaining classes. Hence, such a pixel can be convincingly treated as a negative sample to those most unlikely categories. Based on this insight, we develop an effective pipeline to make sufficient use of unlabeled data. Concretely, we separate reliable and unreliable pixels via the entropy of predictions, push each unreliable pixel to a category-wise queue that consists of negative samples, and manage to train the model with all candidate pixels. Considering the training evolution, where the prediction becomes more and more accurate, we adaptively adjust the threshold for the reliable-unreliable partition. Experimental results on various benchmarks and training settings demonstrate the superiority of our approach over the state-of-the-art alternatives.

Results

PASCAL VOC 2012

Labeled images are selected from the train set of original VOC, 1,464 images in total. And the remaining 9,118 images are all considered as unlabeled ones.

For instance, 1/2 (732) represents 732 labeled images and remaining 9,850 (9,118 + 732) are unlabeled.

Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)
SupOnly 45.77 54.92 65.88 71.69 72.50
U2PL (w/ CutMix) 67.98 69.15 73.66 76.16 79.49

Labeled images are selected from the train set of augmented VOC, 10,582 images in total.

Method 1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)
SupOnly 67.87 71.55 75.80 77.13
U2PL (w/ CutMix) 77.21 79.01 79.30 80.50

Cityscapes

Labeled images are selected from the train set, 2,975 images in total.

Method 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
SupOnly 65.74 72.53 74.43 77.83
U2PL (w/ CutMix) 70.30 74.37 76.47 79.05
U2PL (w/ AEL) 74.90 76.48 78.51 79.12

Checkpoints

  • Models on Cityscapes with AEL (ResNet101-DeepLabv3+)
1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
Google Drive Google Drive Google Drive Google Drive
Baidu Drive
Fetch Code: rrpd
Baidu Drive
Fetch Code: welw
Baidu Drive
Fetch Code: qwcd
Baidu Drive
Fetch Code: 4p8r

Installation

git clone https://github.com/Haochen-Wang409/U2PL.git && cd U2PL
conda create -n u2pl python=3.6.9
conda activate u2pl
pip install -r requirements.txt
pip install pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 -f https://download.pytorch.org/whl/torch_stable.html

Usage

U2PL is evaluated on both Cityscapes and PASCAL VOC 2012 dataset.

Prepare Data

For Cityscapes

Download "leftImg8bit_trainvaltest.zip" and "gtFine_trainvaltest.zip" from: https://www.cityscapes-dataset.com/downloads/.

Next, unzip the files to folder data and make the dictionary structures as follows:

data/cityscapes
├── gtFine
│   ├── test
│   ├── train
│   └── val
└── leftImg8bit
    ├── test
    ├── train
    └── val
For PASCAL VOC 2012

Download "VOCtrainval_11-May-2012.tar" from: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar.

And unzip the files to folder data and make the dictionary structures as follows:

data/VOC2012
├── Annotations
├── ImageSets
├── JPEGImages
├── SegmentationClass
├── SegmentationClassAug
└── SegmentationObject

Finally, the structure of dictionary data should be as follows:

data
├── cityscapes
│   ├── gtFine
│   └── leftImg8bit
├── splits
│   ├── cityscapes
│   └── pascal
└── VOC2012
    ├── Annotations
    ├── ImageSets
    ├── JPEGImages
    ├── SegmentationClass
    ├── SegmentationClassAug
    └── SegmentationObject

Prepare Pretrained Backbone

Before training, please download ResNet101 pretrained on ImageNet-1K from one of the following:

After that, modify model_urls in semseg/models/resnet.py to </path/to/resnet101.pth>

Train a Fully-Supervised Model

For instance, we can train a model on PASCAL VOC 2012 with only 1464 labeled data for supervision by:

cd experiments/pascal/1464/suponly
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

Or for Cityscapes, a model supervised by only 744 labeled data can be trained by:

cd experiments/cityscapes/744/suponly
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

After training, the model should be evaluated by

sh eval.sh

Train a Semi-Supervised Model

We can train a model on PASCAL VOC 2012 with 1464 labeled data and 9118 unlabeled data for supervision by:

cd experiments/pascal/1464/ours
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

Or for Cityscapes, a model supervised by 744 labeled data and 2231 unlabeled data can be trained by:

cd experiments/cityscapes/744/ours
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

After training, the model should be evaluated by

sh eval.sh

Train a Semi-Supervised Model on Cityscapes with AEL

First, you should switch the branch:

git checkout with_AEL

Then, we can train a model supervised by 744 labeled data and 2231 unlabeled data by:

cd experiments/city_744
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

After training, the model should be evaluated by

sh eval.sh

Note

<num_gpu> means the number of GPUs for training.

To reproduce our results, we recommend you follow the settings:

  • Cityscapes: 4 for SupOnly and 8 for Semi-Supervised
  • PASCAL VOC 2012: 2 for SupOnly and 4 for Semi-Supervised

Or, change the lr in config.yaml in a linear manner (e.g., if you want to train a SupOnly model on Cityscapes with 8 GPUs, you are recommended to change the lr to 0.02).

If you want to train a model on other split, you need to modify data_list and n_sup in config.yaml.

Due to the randomness of function torch.nn.functional.interpolate when mode="bilinear", the results of semantic segmentation will not be the same EVEN IF a fixed random seed is set.

Therefore, we recommend you run 3 times and get the average performance.

License

This project is released under the Apache 2.0 license.

Acknowledgement

The contrastive learning loss and strong data augmentation (CutMix, CutOut, and ClassMix) are borrowed from ReCo. We reproduce our U2PL based on AEL on branch with_AEL.

Thanks a lot for their great work!

Citation

@inproceedings{wang2022semi,
    title={Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels},
    author={Wang, Yuchao and Wang, Haochen and Shen, Yujun and Fei, Jingjing and Li, Wei and Jin, Guoqiang and Wu, Liwei and Zhao, Rui and Le, Xinyi},
    booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision and Patern Recognition (CVPR)},
    year={2022}
}

Contact

Owner
Haochen Wang
Haochen Wang
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
LeetCode Solutions https://t.me/tenvlad

leetcode LeetCode Solutions groupped by common patterns YouTube: https://www.youtube.com/c/vladten Telegram: https://t.me/nilinterface Problems source

Vlad Ten 158 Dec 29, 2022
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023