[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Overview

Using Unreliable Pseudo Labels

Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022.

Please refer to our project page for qualitative results.

Abstract. The crux of semi-supervised semantic segmentation is to assign adequate pseudo-labels to the pixels of unlabeled images. A common practice is to select the highly confident predictions as the pseudo ground-truth, but it leads to a problem that most pixels may be left unused due to their unreliability. We argue that every pixel matters to the model training, even its prediction is ambiguous. Intuitively, an unreliable prediction may get confused among the top classes (i.e., those with the highest probabilities), however, it should be confident about the pixel not belonging to the remaining classes. Hence, such a pixel can be convincingly treated as a negative sample to those most unlikely categories. Based on this insight, we develop an effective pipeline to make sufficient use of unlabeled data. Concretely, we separate reliable and unreliable pixels via the entropy of predictions, push each unreliable pixel to a category-wise queue that consists of negative samples, and manage to train the model with all candidate pixels. Considering the training evolution, where the prediction becomes more and more accurate, we adaptively adjust the threshold for the reliable-unreliable partition. Experimental results on various benchmarks and training settings demonstrate the superiority of our approach over the state-of-the-art alternatives.

Results

PASCAL VOC 2012

Labeled images are selected from the train set of original VOC, 1,464 images in total. And the remaining 9,118 images are all considered as unlabeled ones.

For instance, 1/2 (732) represents 732 labeled images and remaining 9,850 (9,118 + 732) are unlabeled.

Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)
SupOnly 45.77 54.92 65.88 71.69 72.50
U2PL (w/ CutMix) 67.98 69.15 73.66 76.16 79.49

Labeled images are selected from the train set of augmented VOC, 10,582 images in total.

Method 1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)
SupOnly 67.87 71.55 75.80 77.13
U2PL (w/ CutMix) 77.21 79.01 79.30 80.50

Cityscapes

Labeled images are selected from the train set, 2,975 images in total.

Method 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
SupOnly 65.74 72.53 74.43 77.83
U2PL (w/ CutMix) 70.30 74.37 76.47 79.05
U2PL (w/ AEL) 74.90 76.48 78.51 79.12

Checkpoints

  • Models on Cityscapes with AEL (ResNet101-DeepLabv3+)
1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
Google Drive Google Drive Google Drive Google Drive
Baidu Drive
Fetch Code: rrpd
Baidu Drive
Fetch Code: welw
Baidu Drive
Fetch Code: qwcd
Baidu Drive
Fetch Code: 4p8r

Installation

git clone https://github.com/Haochen-Wang409/U2PL.git && cd U2PL
conda create -n u2pl python=3.6.9
conda activate u2pl
pip install -r requirements.txt
pip install pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 -f https://download.pytorch.org/whl/torch_stable.html

Usage

U2PL is evaluated on both Cityscapes and PASCAL VOC 2012 dataset.

Prepare Data

For Cityscapes

Download "leftImg8bit_trainvaltest.zip" and "gtFine_trainvaltest.zip" from: https://www.cityscapes-dataset.com/downloads/.

Next, unzip the files to folder data and make the dictionary structures as follows:

data/cityscapes
├── gtFine
│   ├── test
│   ├── train
│   └── val
└── leftImg8bit
    ├── test
    ├── train
    └── val
For PASCAL VOC 2012

Download "VOCtrainval_11-May-2012.tar" from: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar.

And unzip the files to folder data and make the dictionary structures as follows:

data/VOC2012
├── Annotations
├── ImageSets
├── JPEGImages
├── SegmentationClass
├── SegmentationClassAug
└── SegmentationObject

Finally, the structure of dictionary data should be as follows:

data
├── cityscapes
│   ├── gtFine
│   └── leftImg8bit
├── splits
│   ├── cityscapes
│   └── pascal
└── VOC2012
    ├── Annotations
    ├── ImageSets
    ├── JPEGImages
    ├── SegmentationClass
    ├── SegmentationClassAug
    └── SegmentationObject

Prepare Pretrained Backbone

Before training, please download ResNet101 pretrained on ImageNet-1K from one of the following:

After that, modify model_urls in semseg/models/resnet.py to </path/to/resnet101.pth>

Train a Fully-Supervised Model

For instance, we can train a model on PASCAL VOC 2012 with only 1464 labeled data for supervision by:

cd experiments/pascal/1464/suponly
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

Or for Cityscapes, a model supervised by only 744 labeled data can be trained by:

cd experiments/cityscapes/744/suponly
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

After training, the model should be evaluated by

sh eval.sh

Train a Semi-Supervised Model

We can train a model on PASCAL VOC 2012 with 1464 labeled data and 9118 unlabeled data for supervision by:

cd experiments/pascal/1464/ours
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

Or for Cityscapes, a model supervised by 744 labeled data and 2231 unlabeled data can be trained by:

cd experiments/cityscapes/744/ours
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

After training, the model should be evaluated by

sh eval.sh

Train a Semi-Supervised Model on Cityscapes with AEL

First, you should switch the branch:

git checkout with_AEL

Then, we can train a model supervised by 744 labeled data and 2231 unlabeled data by:

cd experiments/city_744
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

After training, the model should be evaluated by

sh eval.sh

Note

<num_gpu> means the number of GPUs for training.

To reproduce our results, we recommend you follow the settings:

  • Cityscapes: 4 for SupOnly and 8 for Semi-Supervised
  • PASCAL VOC 2012: 2 for SupOnly and 4 for Semi-Supervised

Or, change the lr in config.yaml in a linear manner (e.g., if you want to train a SupOnly model on Cityscapes with 8 GPUs, you are recommended to change the lr to 0.02).

If you want to train a model on other split, you need to modify data_list and n_sup in config.yaml.

Due to the randomness of function torch.nn.functional.interpolate when mode="bilinear", the results of semantic segmentation will not be the same EVEN IF a fixed random seed is set.

Therefore, we recommend you run 3 times and get the average performance.

License

This project is released under the Apache 2.0 license.

Acknowledgement

The contrastive learning loss and strong data augmentation (CutMix, CutOut, and ClassMix) are borrowed from ReCo. We reproduce our U2PL based on AEL on branch with_AEL.

Thanks a lot for their great work!

Citation

@inproceedings{wang2022semi,
    title={Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels},
    author={Wang, Yuchao and Wang, Haochen and Shen, Yujun and Fei, Jingjing and Li, Wei and Jin, Guoqiang and Wu, Liwei and Zhao, Rui and Le, Xinyi},
    booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision and Patern Recognition (CVPR)},
    year={2022}
}

Contact

Owner
Haochen Wang
Haochen Wang
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.

Pyserini Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse re

Castorini 706 Dec 29, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 04, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023