[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Overview

Using Unreliable Pseudo Labels

Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022.

Please refer to our project page for qualitative results.

Abstract. The crux of semi-supervised semantic segmentation is to assign adequate pseudo-labels to the pixels of unlabeled images. A common practice is to select the highly confident predictions as the pseudo ground-truth, but it leads to a problem that most pixels may be left unused due to their unreliability. We argue that every pixel matters to the model training, even its prediction is ambiguous. Intuitively, an unreliable prediction may get confused among the top classes (i.e., those with the highest probabilities), however, it should be confident about the pixel not belonging to the remaining classes. Hence, such a pixel can be convincingly treated as a negative sample to those most unlikely categories. Based on this insight, we develop an effective pipeline to make sufficient use of unlabeled data. Concretely, we separate reliable and unreliable pixels via the entropy of predictions, push each unreliable pixel to a category-wise queue that consists of negative samples, and manage to train the model with all candidate pixels. Considering the training evolution, where the prediction becomes more and more accurate, we adaptively adjust the threshold for the reliable-unreliable partition. Experimental results on various benchmarks and training settings demonstrate the superiority of our approach over the state-of-the-art alternatives.

Results

PASCAL VOC 2012

Labeled images are selected from the train set of original VOC, 1,464 images in total. And the remaining 9,118 images are all considered as unlabeled ones.

For instance, 1/2 (732) represents 732 labeled images and remaining 9,850 (9,118 + 732) are unlabeled.

Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)
SupOnly 45.77 54.92 65.88 71.69 72.50
U2PL (w/ CutMix) 67.98 69.15 73.66 76.16 79.49

Labeled images are selected from the train set of augmented VOC, 10,582 images in total.

Method 1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)
SupOnly 67.87 71.55 75.80 77.13
U2PL (w/ CutMix) 77.21 79.01 79.30 80.50

Cityscapes

Labeled images are selected from the train set, 2,975 images in total.

Method 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
SupOnly 65.74 72.53 74.43 77.83
U2PL (w/ CutMix) 70.30 74.37 76.47 79.05
U2PL (w/ AEL) 74.90 76.48 78.51 79.12

Checkpoints

  • Models on Cityscapes with AEL (ResNet101-DeepLabv3+)
1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
Google Drive Google Drive Google Drive Google Drive
Baidu Drive
Fetch Code: rrpd
Baidu Drive
Fetch Code: welw
Baidu Drive
Fetch Code: qwcd
Baidu Drive
Fetch Code: 4p8r

Installation

git clone https://github.com/Haochen-Wang409/U2PL.git && cd U2PL
conda create -n u2pl python=3.6.9
conda activate u2pl
pip install -r requirements.txt
pip install pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 -f https://download.pytorch.org/whl/torch_stable.html

Usage

U2PL is evaluated on both Cityscapes and PASCAL VOC 2012 dataset.

Prepare Data

For Cityscapes

Download "leftImg8bit_trainvaltest.zip" and "gtFine_trainvaltest.zip" from: https://www.cityscapes-dataset.com/downloads/.

Next, unzip the files to folder data and make the dictionary structures as follows:

data/cityscapes
├── gtFine
│   ├── test
│   ├── train
│   └── val
└── leftImg8bit
    ├── test
    ├── train
    └── val
For PASCAL VOC 2012

Download "VOCtrainval_11-May-2012.tar" from: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar.

And unzip the files to folder data and make the dictionary structures as follows:

data/VOC2012
├── Annotations
├── ImageSets
├── JPEGImages
├── SegmentationClass
├── SegmentationClassAug
└── SegmentationObject

Finally, the structure of dictionary data should be as follows:

data
├── cityscapes
│   ├── gtFine
│   └── leftImg8bit
├── splits
│   ├── cityscapes
│   └── pascal
└── VOC2012
    ├── Annotations
    ├── ImageSets
    ├── JPEGImages
    ├── SegmentationClass
    ├── SegmentationClassAug
    └── SegmentationObject

Prepare Pretrained Backbone

Before training, please download ResNet101 pretrained on ImageNet-1K from one of the following:

After that, modify model_urls in semseg/models/resnet.py to </path/to/resnet101.pth>

Train a Fully-Supervised Model

For instance, we can train a model on PASCAL VOC 2012 with only 1464 labeled data for supervision by:

cd experiments/pascal/1464/suponly
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

Or for Cityscapes, a model supervised by only 744 labeled data can be trained by:

cd experiments/cityscapes/744/suponly
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

After training, the model should be evaluated by

sh eval.sh

Train a Semi-Supervised Model

We can train a model on PASCAL VOC 2012 with 1464 labeled data and 9118 unlabeled data for supervision by:

cd experiments/pascal/1464/ours
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

Or for Cityscapes, a model supervised by 744 labeled data and 2231 unlabeled data can be trained by:

cd experiments/cityscapes/744/ours
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

After training, the model should be evaluated by

sh eval.sh

Train a Semi-Supervised Model on Cityscapes with AEL

First, you should switch the branch:

git checkout with_AEL

Then, we can train a model supervised by 744 labeled data and 2231 unlabeled data by:

cd experiments/city_744
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

After training, the model should be evaluated by

sh eval.sh

Note

<num_gpu> means the number of GPUs for training.

To reproduce our results, we recommend you follow the settings:

  • Cityscapes: 4 for SupOnly and 8 for Semi-Supervised
  • PASCAL VOC 2012: 2 for SupOnly and 4 for Semi-Supervised

Or, change the lr in config.yaml in a linear manner (e.g., if you want to train a SupOnly model on Cityscapes with 8 GPUs, you are recommended to change the lr to 0.02).

If you want to train a model on other split, you need to modify data_list and n_sup in config.yaml.

Due to the randomness of function torch.nn.functional.interpolate when mode="bilinear", the results of semantic segmentation will not be the same EVEN IF a fixed random seed is set.

Therefore, we recommend you run 3 times and get the average performance.

License

This project is released under the Apache 2.0 license.

Acknowledgement

The contrastive learning loss and strong data augmentation (CutMix, CutOut, and ClassMix) are borrowed from ReCo. We reproduce our U2PL based on AEL on branch with_AEL.

Thanks a lot for their great work!

Citation

@inproceedings{wang2022semi,
    title={Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels},
    author={Wang, Yuchao and Wang, Haochen and Shen, Yujun and Fei, Jingjing and Li, Wei and Jin, Guoqiang and Wu, Liwei and Zhao, Rui and Le, Xinyi},
    booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision and Patern Recognition (CVPR)},
    year={2022}
}

Contact

Owner
Haochen Wang
Haochen Wang
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022