[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Overview

Using Unreliable Pseudo Labels

Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022.

Please refer to our project page for qualitative results.

Abstract. The crux of semi-supervised semantic segmentation is to assign adequate pseudo-labels to the pixels of unlabeled images. A common practice is to select the highly confident predictions as the pseudo ground-truth, but it leads to a problem that most pixels may be left unused due to their unreliability. We argue that every pixel matters to the model training, even its prediction is ambiguous. Intuitively, an unreliable prediction may get confused among the top classes (i.e., those with the highest probabilities), however, it should be confident about the pixel not belonging to the remaining classes. Hence, such a pixel can be convincingly treated as a negative sample to those most unlikely categories. Based on this insight, we develop an effective pipeline to make sufficient use of unlabeled data. Concretely, we separate reliable and unreliable pixels via the entropy of predictions, push each unreliable pixel to a category-wise queue that consists of negative samples, and manage to train the model with all candidate pixels. Considering the training evolution, where the prediction becomes more and more accurate, we adaptively adjust the threshold for the reliable-unreliable partition. Experimental results on various benchmarks and training settings demonstrate the superiority of our approach over the state-of-the-art alternatives.

Results

PASCAL VOC 2012

Labeled images are selected from the train set of original VOC, 1,464 images in total. And the remaining 9,118 images are all considered as unlabeled ones.

For instance, 1/2 (732) represents 732 labeled images and remaining 9,850 (9,118 + 732) are unlabeled.

Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)
SupOnly 45.77 54.92 65.88 71.69 72.50
U2PL (w/ CutMix) 67.98 69.15 73.66 76.16 79.49

Labeled images are selected from the train set of augmented VOC, 10,582 images in total.

Method 1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)
SupOnly 67.87 71.55 75.80 77.13
U2PL (w/ CutMix) 77.21 79.01 79.30 80.50

Cityscapes

Labeled images are selected from the train set, 2,975 images in total.

Method 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
SupOnly 65.74 72.53 74.43 77.83
U2PL (w/ CutMix) 70.30 74.37 76.47 79.05
U2PL (w/ AEL) 74.90 76.48 78.51 79.12

Checkpoints

  • Models on Cityscapes with AEL (ResNet101-DeepLabv3+)
1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
Google Drive Google Drive Google Drive Google Drive
Baidu Drive
Fetch Code: rrpd
Baidu Drive
Fetch Code: welw
Baidu Drive
Fetch Code: qwcd
Baidu Drive
Fetch Code: 4p8r

Installation

git clone https://github.com/Haochen-Wang409/U2PL.git && cd U2PL
conda create -n u2pl python=3.6.9
conda activate u2pl
pip install -r requirements.txt
pip install pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 -f https://download.pytorch.org/whl/torch_stable.html

Usage

U2PL is evaluated on both Cityscapes and PASCAL VOC 2012 dataset.

Prepare Data

For Cityscapes

Download "leftImg8bit_trainvaltest.zip" and "gtFine_trainvaltest.zip" from: https://www.cityscapes-dataset.com/downloads/.

Next, unzip the files to folder data and make the dictionary structures as follows:

data/cityscapes
├── gtFine
│   ├── test
│   ├── train
│   └── val
└── leftImg8bit
    ├── test
    ├── train
    └── val
For PASCAL VOC 2012

Download "VOCtrainval_11-May-2012.tar" from: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar.

And unzip the files to folder data and make the dictionary structures as follows:

data/VOC2012
├── Annotations
├── ImageSets
├── JPEGImages
├── SegmentationClass
├── SegmentationClassAug
└── SegmentationObject

Finally, the structure of dictionary data should be as follows:

data
├── cityscapes
│   ├── gtFine
│   └── leftImg8bit
├── splits
│   ├── cityscapes
│   └── pascal
└── VOC2012
    ├── Annotations
    ├── ImageSets
    ├── JPEGImages
    ├── SegmentationClass
    ├── SegmentationClassAug
    └── SegmentationObject

Prepare Pretrained Backbone

Before training, please download ResNet101 pretrained on ImageNet-1K from one of the following:

After that, modify model_urls in semseg/models/resnet.py to </path/to/resnet101.pth>

Train a Fully-Supervised Model

For instance, we can train a model on PASCAL VOC 2012 with only 1464 labeled data for supervision by:

cd experiments/pascal/1464/suponly
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

Or for Cityscapes, a model supervised by only 744 labeled data can be trained by:

cd experiments/cityscapes/744/suponly
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

After training, the model should be evaluated by

sh eval.sh

Train a Semi-Supervised Model

We can train a model on PASCAL VOC 2012 with 1464 labeled data and 9118 unlabeled data for supervision by:

cd experiments/pascal/1464/ours
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

Or for Cityscapes, a model supervised by 744 labeled data and 2231 unlabeled data can be trained by:

cd experiments/cityscapes/744/ours
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

After training, the model should be evaluated by

sh eval.sh

Train a Semi-Supervised Model on Cityscapes with AEL

First, you should switch the branch:

git checkout with_AEL

Then, we can train a model supervised by 744 labeled data and 2231 unlabeled data by:

cd experiments/city_744
# use torch.distributed.launch
sh train.sh <num_gpu> <port>

# or use slurm
# sh slurm_train.sh <num_gpu> <port> <partition>

After training, the model should be evaluated by

sh eval.sh

Note

<num_gpu> means the number of GPUs for training.

To reproduce our results, we recommend you follow the settings:

  • Cityscapes: 4 for SupOnly and 8 for Semi-Supervised
  • PASCAL VOC 2012: 2 for SupOnly and 4 for Semi-Supervised

Or, change the lr in config.yaml in a linear manner (e.g., if you want to train a SupOnly model on Cityscapes with 8 GPUs, you are recommended to change the lr to 0.02).

If you want to train a model on other split, you need to modify data_list and n_sup in config.yaml.

Due to the randomness of function torch.nn.functional.interpolate when mode="bilinear", the results of semantic segmentation will not be the same EVEN IF a fixed random seed is set.

Therefore, we recommend you run 3 times and get the average performance.

License

This project is released under the Apache 2.0 license.

Acknowledgement

The contrastive learning loss and strong data augmentation (CutMix, CutOut, and ClassMix) are borrowed from ReCo. We reproduce our U2PL based on AEL on branch with_AEL.

Thanks a lot for their great work!

Citation

@inproceedings{wang2022semi,
    title={Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels},
    author={Wang, Yuchao and Wang, Haochen and Shen, Yujun and Fei, Jingjing and Li, Wei and Jin, Guoqiang and Wu, Liwei and Zhao, Rui and Le, Xinyi},
    booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision and Patern Recognition (CVPR)},
    year={2022}
}

Contact

Owner
Haochen Wang
Haochen Wang
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022