PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

Related tags

Deep LearningFSGAN
Overview

FSGAN

  • Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge".

  • This project achieve the translation between face photos and artistic portrait drawings using a GAN-based model. You may find useful information in training/testing tips.

  • 📕 Find our paper on arXiv.

  • Try our online Colab demo to generate your own facial sketches.

Our Proposed Framework

Framework-FSGAN

Sample Results

Teaser

Prerequisites

  • Ubuntu >= 18.04
  • Python >= 3.6
  • Our model can only train on GPU >=32 GB at present

Getting Started

Installation

  • Install Pytorch==1.9.0, torchvision==0.10.0 and other dependencies (e.g., visdom and dominate). You can install all the dependencies by
pip install -r requirements.txt

Dataset

We conduct all the experiments on the currently largest Facial Sketch Synthesis (FSS) dataset FS2K. For more details about this dataset, please visit its repo.

In this project, we follow the APDrawingGAN to do some preprocessing on original images, including aligning photo by key points (MTCNN), segment human portrait regions (U2-Net). You can download the preprocessed FS2K dataset here.

If you want to conduct the preprocessing on other images, see preprocessing section.

Train

  • Run python -m visdom.server

  • python train.py --dataroot /home/pz1/datasets/fss/FS2K_data/train/photo/ --checkpoints_dir checkpoints --name ckpt_0 \
    --use_local --discriminator_local --niter 150 --niter_decay 0 --save_epoch_freq 1
  • If you run on DGX-server, you can use sub_by_id.sh to set up many experiments one time.
  • To see losses in training, please refer to log file slurm.out.

Test

Download the weights of pretrained models from the folder for this FSS task on google-drive and specify the path of weights in train/test shell script.

  • To test a single model, please run single_model_test.sh.
  • To test a series of models, please run test_ours.sh.
  • Remember to specify the exp_id and epoch_num in these shell scripts.
  • You can also download our results and all other relevant stuff in this google-drive folder.

Training/Test Tips

Best practice for training and testing your models.

Acknowledgments

Thanks to the great codebase of APDrawingGAN.

Citation

If you find our code and metric useful in your research, please cite our papers.

@aticle{Fan2021FS2K,
  title={Deep Facial Synthesis: A New Challenge},
  author={Deng-Ping, Fan and Ziling, Huang and Peng, Zheng and Hong, Liu and Xuebin, Qin and Luc, Van Gool},
  journal={arXiv},
  year={2021}
}

@article{Fan2019ScootAP,
  title={Scoot: A Perceptual Metric for Facial Sketches},
  author={Deng-Ping Fan and Shengchuan Zhang and Yu-Huan Wu and Yun Liu and Ming-Ming Cheng and Bo Ren and Paul L. Rosin and Rongrong Ji},
  journal={2019 IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2019},
  pages={5611-5621}
}

Owner
Deng-Ping Fan
Postdoctoral Scholar
Deng-Ping Fan
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022