This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Related tags

Deep LearningOTTER
Overview

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation

This repository contains PyTorch evaluation code, training code and pretrained models for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition). Link to the paper.

Bichen Wu*, Ruizhe Cheng*, Peizhao Zhang, Tianren Gao, Joseph E. Gonzalez, Peter Vajda (* indicates equal contribution)

If you used this code for your experiments, please consider citing our paper:

@inproceedings{otter,
    Author = {Wu, Bichen and Cheng, Ruizhe and Zhang, Peizhao and Vajda, Peter and Gonzalez, Joseph E},
    Title = {Data Efficient Language-supervised Zero-shot Recognition with Optimal Transport Distillation},
    Journal = {arXiv:2112.09445},
    Year = {2021}
}

And our related work:

@inproceedings{cheng2021data,
  title={Data-Efficient Language-Supervised Zero-Shot Learning with Self-Distillation},
  author={Cheng, Ruizhe and Wu, Bichen and Zhang, Peizhao and Vajda, Peter and Gonzalez, Joseph E},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={3119--3124},
  year={2021}
}

Model Zoo

OTTER achieves good zero-shot image recognition results on multi-labeled Google Open Images V6 and ImageNet10K from Tencent Images.

Dataset Method Image Encoder Text Encoder GOI [email protected]=1 GOI [email protected]=5 GOI [email protected]=10 IN10K [email protected]=1 IN10K [email protected]=5 IN10K [email protected]=10 url
CC 3M InfoNCE RN50 DeCLUTR-Sci-base 26.8 55.1 66.4 10.9 29.4 40.5 model
CC 3M LS RN50 DeCLUTR-Sci-base 26.3 55.9 67.5 10.1 29.6 39.8 model
CC 3M KD RN50 DeCLUTR-Sci-base 26.7 55.3 67.1 10.0 27.5 38.5 model
CC 3M OTTER RN50 DeCLUTR-Sci-base 29.1 59.6 70.9 12.0 31.8 42.1 model

Usage

First, git clone the repository

git clone https://github.com/facebookresearch/OTTER.git

Then, install required packkages using pip

conda create --name otter python=3.8
conda activate otter
pip install -r requirements.txt

Try out classifying with a pretrained OTTER or one of its baseline models.

import torch
from PIL import Image
import otter

device = "cuda" if torch.cuda.is_available() else "cpu"
temperature = 60

model, preprocess = otter.load("OTTER") # KD, LS, InfoNCE
model = model.to(device)

image = Image.open("doge.jpg")
image = preprocess(image).unsqueeze(0).to(device)
texts = ['photo of a dog', 'photo of a sofa', 'photo of a flower']

with torch.no_grad():
    features = model.forward_features(image, texts)
    image_logits, text_logits = model.compute_logits(features)
    image_logits *= temperature

    probs = image_logits.softmax(dim=-1).cpu().numpy()

print("Probs:", probs)  # Probs: [[0.92657197 0.00180788 0.07162025]]

Evaluation

You can evaluate a pretrained model with launch_scripts/eval.sh.

Note that for faster evaluation, we used FAISS for knn lookup. The result however will be slightly different from using sklearn knn functions.

Data preparation

Download the Conceptual Caption or YFCC 15M (subset of YFCC100M) dataset for training. Download Google Open Images's or ImageNet 10K's test set for evaluation.

Conceptual Captions

First, download Train-GCC-training.tsv, which contains captions and image urls, from the official CC website. Then, follow the instructions in this repo to efficiently download Conceptual Captions. After the download completes, there should be a downloaded_training_report.tsv. Make sure it's in the same cc root folder as Train-GCC-training.tsv along with the training folder that contains all the images.

Run python data/cc_preprocess.py --cc_root /data/cc to generate a processed_labels.csv, which contains paired image paths and captions. This preprocessing step filters out invalid images that can't be opened by PIL. Note that not all images in the conceptual captions dataset are available. In our case, we had 2911810 valid images from the train set of conceptual captions.

YFCC 15M

Follow the instructions in here to download the 15 million images which were used in training CLIP.

After downloading all the zip files, convert the zip files to datadings format (with compression if necessary). In data/yfcc.py, the YFCC dataset takes in the datadings folder.

Google Open Images

Download the test set of Google Open Images V6 from here. We have provided the class names and label annotations in the dataset_meta_data folder.

ImageNet 10K (from Tencent ML-Images)

You can also evaluate on the validation set of multi-labeled ImageNet 10K from Tencent ML-Images. Download the ImageNet portion of Tencent ML-Images from here. We have also included the class names and label annotations in the dataset_meta_data folder.

The datasets should be placed in the following way:

DATA_ROOT/
  cc/
    processed_labels.csv
    training/
      ... (images)
  open-images/
    test/
      ... (images)
  tencent/
    images/
      ... (images)

Single node training

You can launch training on a single node with scripts in launch_scripts.

Dataset Analysis

You can analyze the prevalence of the noisy matching problem with python3 data_analysis.py --data_root <data_root> --datasets cc --batch 512 --stop 1000. The script uses a pretrained OpenAI CLIP model to estimate the the on-diagonal vs off-diagonal matching scores of an image-caption dataset.

License

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.

Owner
Meta Research
Meta Research
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
ML models and internal tensors 3D visualizer

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope

Zetane Systems 787 Dec 30, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
A decent AI that solves daily Wordle puzzles. Works with different websites with similar wordlists,.

Wordle-AI A decent AI that solves daily "Wordle" puzzles. Works with different websites with similar wordlists. When prompted with "Word:" enter the w

Ethan 1 Feb 10, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023