This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Related tags

Deep LearningOTTER
Overview

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation

This repository contains PyTorch evaluation code, training code and pretrained models for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition). Link to the paper.

Bichen Wu*, Ruizhe Cheng*, Peizhao Zhang, Tianren Gao, Joseph E. Gonzalez, Peter Vajda (* indicates equal contribution)

If you used this code for your experiments, please consider citing our paper:

@inproceedings{otter,
    Author = {Wu, Bichen and Cheng, Ruizhe and Zhang, Peizhao and Vajda, Peter and Gonzalez, Joseph E},
    Title = {Data Efficient Language-supervised Zero-shot Recognition with Optimal Transport Distillation},
    Journal = {arXiv:2112.09445},
    Year = {2021}
}

And our related work:

@inproceedings{cheng2021data,
  title={Data-Efficient Language-Supervised Zero-Shot Learning with Self-Distillation},
  author={Cheng, Ruizhe and Wu, Bichen and Zhang, Peizhao and Vajda, Peter and Gonzalez, Joseph E},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={3119--3124},
  year={2021}
}

Model Zoo

OTTER achieves good zero-shot image recognition results on multi-labeled Google Open Images V6 and ImageNet10K from Tencent Images.

Dataset Method Image Encoder Text Encoder GOI [email protected]=1 GOI [email protected]=5 GOI [email protected]=10 IN10K [email protected]=1 IN10K [email protected]=5 IN10K [email protected]=10 url
CC 3M InfoNCE RN50 DeCLUTR-Sci-base 26.8 55.1 66.4 10.9 29.4 40.5 model
CC 3M LS RN50 DeCLUTR-Sci-base 26.3 55.9 67.5 10.1 29.6 39.8 model
CC 3M KD RN50 DeCLUTR-Sci-base 26.7 55.3 67.1 10.0 27.5 38.5 model
CC 3M OTTER RN50 DeCLUTR-Sci-base 29.1 59.6 70.9 12.0 31.8 42.1 model

Usage

First, git clone the repository

git clone https://github.com/facebookresearch/OTTER.git

Then, install required packkages using pip

conda create --name otter python=3.8
conda activate otter
pip install -r requirements.txt

Try out classifying with a pretrained OTTER or one of its baseline models.

import torch
from PIL import Image
import otter

device = "cuda" if torch.cuda.is_available() else "cpu"
temperature = 60

model, preprocess = otter.load("OTTER") # KD, LS, InfoNCE
model = model.to(device)

image = Image.open("doge.jpg")
image = preprocess(image).unsqueeze(0).to(device)
texts = ['photo of a dog', 'photo of a sofa', 'photo of a flower']

with torch.no_grad():
    features = model.forward_features(image, texts)
    image_logits, text_logits = model.compute_logits(features)
    image_logits *= temperature

    probs = image_logits.softmax(dim=-1).cpu().numpy()

print("Probs:", probs)  # Probs: [[0.92657197 0.00180788 0.07162025]]

Evaluation

You can evaluate a pretrained model with launch_scripts/eval.sh.

Note that for faster evaluation, we used FAISS for knn lookup. The result however will be slightly different from using sklearn knn functions.

Data preparation

Download the Conceptual Caption or YFCC 15M (subset of YFCC100M) dataset for training. Download Google Open Images's or ImageNet 10K's test set for evaluation.

Conceptual Captions

First, download Train-GCC-training.tsv, which contains captions and image urls, from the official CC website. Then, follow the instructions in this repo to efficiently download Conceptual Captions. After the download completes, there should be a downloaded_training_report.tsv. Make sure it's in the same cc root folder as Train-GCC-training.tsv along with the training folder that contains all the images.

Run python data/cc_preprocess.py --cc_root /data/cc to generate a processed_labels.csv, which contains paired image paths and captions. This preprocessing step filters out invalid images that can't be opened by PIL. Note that not all images in the conceptual captions dataset are available. In our case, we had 2911810 valid images from the train set of conceptual captions.

YFCC 15M

Follow the instructions in here to download the 15 million images which were used in training CLIP.

After downloading all the zip files, convert the zip files to datadings format (with compression if necessary). In data/yfcc.py, the YFCC dataset takes in the datadings folder.

Google Open Images

Download the test set of Google Open Images V6 from here. We have provided the class names and label annotations in the dataset_meta_data folder.

ImageNet 10K (from Tencent ML-Images)

You can also evaluate on the validation set of multi-labeled ImageNet 10K from Tencent ML-Images. Download the ImageNet portion of Tencent ML-Images from here. We have also included the class names and label annotations in the dataset_meta_data folder.

The datasets should be placed in the following way:

DATA_ROOT/
  cc/
    processed_labels.csv
    training/
      ... (images)
  open-images/
    test/
      ... (images)
  tencent/
    images/
      ... (images)

Single node training

You can launch training on a single node with scripts in launch_scripts.

Dataset Analysis

You can analyze the prevalence of the noisy matching problem with python3 data_analysis.py --data_root <data_root> --datasets cc --batch 512 --stop 1000. The script uses a pretrained OpenAI CLIP model to estimate the the on-diagonal vs off-diagonal matching scores of an image-caption dataset.

License

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.

Owner
Meta Research
Meta Research
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022