Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Overview

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"


Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition

Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition
Hua Zhang, Ruoyun Gou, Jili Shang, Fangyao Shen, Yifan Wu and Guojun Dai

Abstract: Speech emotion recognition (SER) is a difficult and challenging task because of the affective variances between different speakers. The performances of SER are extremely reliant on the extracted features from speech signals. To establish an effective features extracting and classification model is still a challenging task. In this paper, we propose a new method for SER based on Deep Convolution Neural Network (DCNN) and Bidirectional Long Short-Term Memory with Attention (BLSTMwA) model (DCNN-BLSTMwA). We first preprocess the speech samples by data enhancement and datasets balancing. Secondly, we extract three-channel of log Mel-spectrograms (static, delta, and delta-delta) as DCNN input. Then the DCNN model pre-trained on ImageNet dataset is applied to generate the segment-level features. We stack these features of a sentence into utterance-level features. Next, we adopt BLSTM to learn the high-level emotional features for temporal summarization, followed by an attention layer which can focus on emotionally relevant features. Finally, the learned high-level emotional features are fed into the Deep Neural Network (DNN) to predict the final emotion. Experiments on EMO-DB and IEMOCAP database obtain the unweighted average recall (UAR) of 87.86 and 68.50%, respectively, which are better than most popular SER methods and demonstrate the effectiveness of our propose method.

link to paper

Requirements

The project has been tested on a python=3.7 on Ubuntu 20.04 with the following packages:

tensorflow=2.7.0
librosa=0.8.1
scikit-learn=1.0.1

Uses librosa to read files, which needs sndfile.
Use sudo apt-get install libsndfile1 to install sndfile library

Usage

This repository can be used in the following ways:

  1. Using train.py.
    i. Download the RAVDESS dataset (only this dataset is supported as of now) and extract it within the dataset directory. Then run the commands below to move all files into the .dataset/ directory from indivisual sub folders like .dataset/Actor-xx. Run these from within the dataset directory. Make sure to be in the .dataset/ directory before running these comannds from a linux terminal.
    find . -mindepth 2 -type f -print -exec mv {} . \;  
    rm -r Actor_*
    Then 
    
    ii. Run train.py with required options. Use python train.py -h to check all options available. A saved_model will be put in the saved_model directory.
    iii. Use infer.py to run inference on a set of files.
  2. Using SpeechModel.py to get a Keras Model into your code. This model follows specifications mentioned in the paper. You may write your own dataset code.
    Example:
    # Your own dataset architecture
    from SpeechModel import SpeechModel
    SP = SpeechModel
    model = SP.create_model()
    # Rest of model training code
    
  3. Using just the load_wav and get_framed_log_melspectrogram functions from utils.py, you can write your own dataset funcion, as well as your own model. This function returns a (num_frames, 64, 64, 3) shaped array that can be fed to a TimeDistributed network of your choice.

Model Description

The model uses a TimeDistributed layer to feed all segments of a audio file that have been converted into 3 channel images to a pretrained CNN network (in this case, resnet50_v2, trained on imagenet). Following this, we have bi-lstm layers and attention layers. Then, there are Fully Connected Layers with dropout and finally, classification with 8 nodes.


(Image credits: Paper cited below)

Example usage

Training

  • Use python train.py -h to see a list of arguments.
  • python train.py 30 to train the model for 30 epochs

Inference

(Still to be implemented)

Limitations

  1. Currently this repo only supports dataset preparation for the RAVDESS model since different datasets describe their labels differently. You can still use this repo with other datasets by defining your own function to load the datasets and using the get_framed_log_melspectrograms function from utils.py.
    Then you may use SpeechModel.py to create a model based on specifications form the paper and train.
  2. Since I couldn't find a pretrained AlexNet model and didn't have the resources myself to train one from scratch, I used a pretrained ResNet 50 model. This may affect the performance and not match the results given by the authors.

Credits and acknowledgements:

I did this work for a hackathon. This method did not produce the best results for my use case. I suspect this was due to the dataset being very noisy.

Citation

AUTHOR=Zhang Hua, Gou Ruoyun, Shang Jili, Shen Fangyao, Wu Yifan, Dai Guojun
    
TITLE=Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition  
    
JOURNAL=Frontiers in Physiology     
    
VOLUME=12      
    
YEAR=2021
    
PAGES=177   
        
URL=https://www.frontiersin.org/article/10.3389/fphys.2021.643202     
    
DOI=10.3389/fphys.2021.643202    
    
ISSN=1664-042X   

ABSTRACT=Speech emotion recognition (SER) is a difficult and challenging task because of the affective variances between different speakers. The performances of SER are extremely reliant on the extracted features from speech signals. To establish an effective features extracting and classification model is still a challenging task. In this paper, we propose a new method for SER based on Deep Convolution Neural Network (DCNN) and Bidirectional Long Short-Term Memory with Attention (BLSTMwA) model (DCNN-BLSTMwA). We first preprocess the speech samples by data enhancement and datasets balancing. Secondly, we extract three-channel of log Mel-spectrograms (static, delta, and delta-delta) as DCNN input. Then the DCNN model pre-trained on ImageNet dataset is applied to generate the segment-level features. We stack these features of a sentence into utterance-level features. Next, we adopt BLSTM to learn the high-level emotional features for temporal summarization, followed by an attention layer which can focus on emotionally relevant features. Finally, the learned high-level emotional features are fed into the Deep Neural Network (DNN) to predict the final emotion. Experiments on EMO-DB and IEMOCAP database obtain the unweighted average recall (UAR) of 87.86 and 68.50%, respectively, which are better than most popular SER methods and demonstrate the effectiveness of our propose method.
Owner
Ankush Malaker
Result driven, deep learning engineer with a passion to solve problems using computers and deep learning.
Ankush Malaker
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Ian Covert 130 Jan 01, 2023
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022