A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

Overview

IllustrationGAN

A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

Generated Images

These images were generated by the model after being trained on a custom dataset of about 20,000 anime faces that were automatically cropped from illustrations using a face detector. Generated Images

Checking for Overfitting

It is theoretically possible for the generator network to memorize training set images rather than actually generalizing and learning to produce novel images of its own. To check for this, I randomly generate images and display the "closest" images in the training set according to mean squared error. The top row is randomly generated images, the columns are the closest 5 images in the training set.

Overfitting Check

It is clear that the generator does not merely learn to copy training set images, but rather generalizes and is able to produce its own unique images.

How it Works

Generative Adversarial Networks consist of two neural networks: a discriminator and a generator. The discriminator receives both real images from the training set and generated images produced by the generator. The discriminator outputs the probability that an image is real, so it is trained to output high values for the real images and low values for the generated ones. The generator is trained to produce images that the discriminator thinks are real. Both the discriminator and generator are trainined simultaneously so that they compete against each other. As a result of this, the generator learns to produce more and more realistic images as it trains.

Model Architecture

The model is based on DCGANs, but with a few important differences:

  1. No strided convolutions. The generator uses bilinear upsampling to upscale a feature blob by a factor of 2, followed by a stride-1 convolution layer. The discriminator uses a stride-1 convolution followed by 2x2 max pooling.

  2. Minibatch discrimination. See Improved Techniques for Training GANs for more details.

  3. More fully connected layers in both the generator and discriminator. In DCGANs, both networks have only one fully connected layer.

  4. A novel regularization term applied to the generator network. Normally, increasing the number of fully connected layers in the generator beyond one triggers one of the most common failure modes when training GANs: the generator "collapses" the z-space and produces only a very small number of unique examples. In other words, very different z vectors will produce nearly the same generated image. To fix this, I add a small auxiliary z-predictor network that takes as input the output of the last fully connected layer in the generator, and predicts the value of z. In other words, it attempts to learn the inverse of whatever function the generator fully connected layers learn. The z-predictor network and generator are trained together to predict the value of z. This forces the generator fully connected layers to only learn those transformations that preserve information about z. The result is that the aformentioned collapse no longer occurs, and the generator is able to leverage the power of the additional fully connected layers.

Training the Model

Dependencies: TensorFlow, PrettyTensor, numpy, matplotlib

The custom dataset I used is too large to add to a Github repository; I am currently finding a suitable way to distribute it. Instructions for training the model will be in this readme after I make the dataset available.

A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022