Jittor 64*64 implementation of StyleGAN

Overview

StyleGanJittor (Tsinghua university computer graphics course)

Overview

Jittor 64*64 implementation of StyleGAN (Tsinghua university computer graphics course) This project is a repetition of StyleGAN based on python 3.8 + Jittor(计图) and The open source StyleGAN-Pytorch project. I train the model on the color_symbol_7k dataset for 40000 iterations. The model can generate 64×64 symbolic images.

StyleGAN is a generative adversarial network for image generation proposed by NVIDIA in 2018. According to the paper, the generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. The main improvement of this network model over previous models is the structure of the generator, including the addition of an eight-layer Mapping Network, the use of the AdaIn module, and the introduction of image randomness - these structures allow the generator to The overall features of the image are decoupled from the local features to synthesize images with better effects; at the same time, the network also has better latent space interpolation effects.

(Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 4401-4410.)

The training results are shown in Video1trainingResult.avi, Video2GenerationResult1.avi, and Video3GenerationResul2t.avi generated by the trained model.

The Checkpoint folder is the trained StyleGAN model, because it takes up a lot of storage space, the models have been deleted.The data folder is the color_symbol_7k dataset folder. The dataset is processed by the prepare_data file to obtain the LMDB database for accelerated training, and the database is stored in the mdb folder.The sample folder is the folder where the images are generated during the model training process, which can be used to traverse the training process. The generateSample folder is the sample image generated by calling StyleGenerator after the model training is completed.

The MultiResolutionDataset method for reading the LMDB database is defined in dataset.py, the Jittor model reproduced by Jittor is defined in model.py, train.py is used for the model training script, and VideoWrite.py is used to convert the generated image. output for video.

Environment and execution instructions

Project environment dependencies include jittor, ldbm, PIL, argparse, tqdm and some common python libraries.

First you need to unzip the dataset in the data folder. The model can be trained by the script in the terminal of the project environment python train.py --mixing "./mdb/color_symbol_7k_mdb"

Images can be generated based on the trained model and compared for their differences by the script python generate.py --size 64 --n_row 3 --n_col 5 --path './checkpoint/040000.model'

You can adjust the model training parameters by referring to the code in the args section of train.py and generate.py.

Details

The first is the data set preparation, using the LMDB database to accelerate the training. For model construction, refer to the model structure shown in the following figure in the original text, and the recurring Suri used in Pytorch open source version 1. Using the model-dependent framework shown in the second figure below, the original model is split into EqualConv2d, EqualLinear, StyleConvBlock , Convblock and other sub-parts are implemented, and finally built into a complete StyleGenerator and Discriminator.

image

image

In the model building and training part, follow the tutorial provided by the teaching assistant on the official website to help convert the torch method to the jittor method, and explore some other means to implement it yourself. Jittor's documentation is relatively incomplete, and some methods are different from Pytorch. In this case, I use a lower-level method for implementation.

For example: jt.sqrt(out.var(0, unbiased=False) + 1e-8) is used in the Discrimination part of the model to solve the variance of the given dimension of the tensor, and there is no corresponding var() in the Jittor framework method, so I use ((out-out.mean(0)).sqr().sum(0)+1e-8).sqrt() to implement the same function.

Results

Limited by the hardware, the model training time is long, and I don't have enough time to fine-tune various parameters, optimizers and various parameters, so the results obtained by training on Jittor are not as good as when I use the same model framework to train on Pytorch The result is good, but the progressive training process can be clearly seen from the video, and the generated symbols are gradually clear, and the results are gradually getting better.

Figures below are sample results obtained by training on Jittor and Pytorch respectively. For details, please refer to the video files in the folder. The training results of the same model and code on Pytorch can be found in the sample_torch folder.

figures by Jittor figures by Pytorch

To be continued

Owner
Song Shengyu
Song Shengyu
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

FQ-ViT [arXiv] This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining". Table of Contents In

132 Jan 08, 2023
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022