[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Related tags

Deep LearningCTSDG
Overview

CTSDG

Paper | Pre-trained Models | BibTex

Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo, Hongyu Yang, Di Huang
In ICCV'2021

Introduction

Generator. Image inpainting is cast into two subtasks, i.e., structure-constrained texture synthesis (left, blue) and texture-guided structure reconstruction (right, red), and the two parallel-coupled streams borrow encoded deep features from each other. The Bi-GFF module and CFA module are stacked at the end of the generator to further refine the results.

Discriminator. The texture branch estimates the generated texture, while the structure branch guides structure reconstruction.

Prerequisites

  • Python >= 3.6
  • PyTorch >= 1.0
  • NVIDIA GPU + CUDA cuDNN

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/Xiefan-Guo/CTSDG.git
cd CTSDG
pip install -r requirements.txt

Datasets

Image Dataset. We evaluate the proposed method on the CelebA, Paris StreetView, and Places2 datasets, which are widely adopted in the literature.

Mask Dataset. Irregular masks are obtained from Irregular Masks and classified based on their hole sizes relative to the entire image with an increment of 10%.

Training

Analogous to PConv by Liu et.al, initial training followed by finetuning are performed.

python train.py \
  --image_root [path to image directory] \
  --mask_root [path mask directory]

python train.py \
  --image_root [path to image directory] \
  --mask_root [path to mask directory] \
  --pre_trained [path to checkpoints] \
  --finetune True

Distributed training support. You can train model in distributed settings.

python -m torch.distributed.launch --nproc_per_node=N_GPU train.py

Testing

To test the model, you run the following code.

python test.py \
  --pre_trained [path to checkpoints] \
  --image_root [path to image directory] \
  --mask_root [path to mask directory] \
  --result_root [path to output directory] \
  --number_eval [number of images to test]

Citation

If any part of our paper and repository is helpful to your work, please generously cite with:

@InProceedings{Guo_2021_ICCV,
    author    = {Guo, Xiefan and Yang, Hongyu and Huang, Di},
    title     = {Image Inpainting via Conditional Texture and Structure Dual Generation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14134-14143}
}
Owner
Xiefan Guo
Xiefan Guo
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022