A state-of-the-art semi-supervised method for image recognition

Overview

Mean teachers are better role models

Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post

By Antti Tarvainen, Harri Valpola (The Curious AI Company)

Approach

Mean Teacher is a simple method for semi-supervised learning. It consists of the following steps:

  1. Take a supervised architecture and make a copy of it. Let's call the original model the student and the new one the teacher.
  2. At each training step, use the same minibatch as inputs to both the student and the teacher but add random augmentation or noise to the inputs separately.
  3. Add an additional consistency cost between the student and teacher outputs (after softmax).
  4. Let the optimizer update the student weights normally.
  5. Let the teacher weights be an exponential moving average (EMA) of the student weights. That is, after each training step, update the teacher weights a little bit toward the student weights.

Our contribution is the last step. Laine and Aila [paper] used shared parameters between the student and the teacher, or used a temporal ensemble of teacher predictions. In comparison, Mean Teacher is more accurate and applicable to large datasets.

Mean Teacher model

Mean Teacher works well with modern architectures. Combining Mean Teacher with ResNets, we improved the state of the art in semi-supervised learning on the ImageNet and CIFAR-10 datasets.

ImageNet using 10% of the labels top-5 validation error
Variational Auto-Encoder [paper] 35.42 ± 0.90
Mean Teacher ResNet-152 9.11 ± 0.12
All labels, state of the art [paper] 3.79
CIFAR-10 using 4000 labels test error
CT-GAN [paper] 9.98 ± 0.21
Mean Teacher ResNet-26 6.28 ± 0.15
All labels, state of the art [paper] 2.86

Implementation

There are two implementations, one for TensorFlow and one for PyTorch. The PyTorch version is probably easier to adapt to your needs, since it follows typical PyTorch idioms, and there's a natural place to add your model and dataset. Let me know if anything needs clarification.

Regarding the results in the paper, the experiments using a traditional ConvNet architecture were run with the TensorFlow version. The experiments using residual networks were run with the PyTorch version.

Tips for choosing hyperparameters and other tuning

Mean Teacher introduces two new hyperparameters: EMA decay rate and consistency cost weight. The optimal value for each of these depends on the dataset, the model, and the composition of the minibatches. You will also need to choose how to interleave unlabeled samples and labeled samples in minibatches.

Here are some rules of thumb to get you started:

  • If you are working on a new dataset, it may be easiest to start with only labeled data and do pure supervised training. Then when you are happy with the architecture and hyperparameters, add mean teacher. The same network should work well, although you may want to tune down regularization such as weight decay that you have used with small data.
  • Mean Teacher needs some noise in the model to work optimally. In practice, the best noise is probably random input augmentations. Use whatever relevant augmentations you can think of: the algorithm will train the model to be invariant to them.
  • It's useful to dedicate a portion of each minibatch for labeled examples. Then the supervised training signal is strong enough early on to train quickly and prevent getting stuck into uncertainty. In the PyTorch examples we have a quarter or a half of the minibatch for the labeled examples and the rest for the unlabeled. (See TwoStreamBatchSampler in Pytorch code.)
  • For EMA decay rate 0.999 seems to be a good starting point.
  • You can use either MSE or KL-divergence as the consistency cost function. For KL-divergence, a good consistency cost weight is often between 1.0 and 10.0. For MSE, it seems to be between the number of classes and the number of classes squared. On small datasets we saw MSE getting better results, but KL always worked pretty well too.
  • It may help to ramp up the consistency cost in the beginning over the first few epochs until the teacher network starts giving good predictions.
  • An additional trick we used in the PyTorch examples: Have two seperate logit layers at the top level. Use one for classification of labeled examples and one for predicting the teacher output. And then have an additional cost between the logits of these two predictions. The intent is the same as with the consistency cost rampup: in the beginning the teacher output may be wrong, so loosen the link between the classification prediction and the consistency cost. (See the --logit-distance-cost argument in the PyTorch implementation.)
Owner
Curious AI
Deep good. Unsupervised better.
Curious AI
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022