A state-of-the-art semi-supervised method for image recognition

Overview

Mean teachers are better role models

Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post

By Antti Tarvainen, Harri Valpola (The Curious AI Company)

Approach

Mean Teacher is a simple method for semi-supervised learning. It consists of the following steps:

  1. Take a supervised architecture and make a copy of it. Let's call the original model the student and the new one the teacher.
  2. At each training step, use the same minibatch as inputs to both the student and the teacher but add random augmentation or noise to the inputs separately.
  3. Add an additional consistency cost between the student and teacher outputs (after softmax).
  4. Let the optimizer update the student weights normally.
  5. Let the teacher weights be an exponential moving average (EMA) of the student weights. That is, after each training step, update the teacher weights a little bit toward the student weights.

Our contribution is the last step. Laine and Aila [paper] used shared parameters between the student and the teacher, or used a temporal ensemble of teacher predictions. In comparison, Mean Teacher is more accurate and applicable to large datasets.

Mean Teacher model

Mean Teacher works well with modern architectures. Combining Mean Teacher with ResNets, we improved the state of the art in semi-supervised learning on the ImageNet and CIFAR-10 datasets.

ImageNet using 10% of the labels top-5 validation error
Variational Auto-Encoder [paper] 35.42 ± 0.90
Mean Teacher ResNet-152 9.11 ± 0.12
All labels, state of the art [paper] 3.79
CIFAR-10 using 4000 labels test error
CT-GAN [paper] 9.98 ± 0.21
Mean Teacher ResNet-26 6.28 ± 0.15
All labels, state of the art [paper] 2.86

Implementation

There are two implementations, one for TensorFlow and one for PyTorch. The PyTorch version is probably easier to adapt to your needs, since it follows typical PyTorch idioms, and there's a natural place to add your model and dataset. Let me know if anything needs clarification.

Regarding the results in the paper, the experiments using a traditional ConvNet architecture were run with the TensorFlow version. The experiments using residual networks were run with the PyTorch version.

Tips for choosing hyperparameters and other tuning

Mean Teacher introduces two new hyperparameters: EMA decay rate and consistency cost weight. The optimal value for each of these depends on the dataset, the model, and the composition of the minibatches. You will also need to choose how to interleave unlabeled samples and labeled samples in minibatches.

Here are some rules of thumb to get you started:

  • If you are working on a new dataset, it may be easiest to start with only labeled data and do pure supervised training. Then when you are happy with the architecture and hyperparameters, add mean teacher. The same network should work well, although you may want to tune down regularization such as weight decay that you have used with small data.
  • Mean Teacher needs some noise in the model to work optimally. In practice, the best noise is probably random input augmentations. Use whatever relevant augmentations you can think of: the algorithm will train the model to be invariant to them.
  • It's useful to dedicate a portion of each minibatch for labeled examples. Then the supervised training signal is strong enough early on to train quickly and prevent getting stuck into uncertainty. In the PyTorch examples we have a quarter or a half of the minibatch for the labeled examples and the rest for the unlabeled. (See TwoStreamBatchSampler in Pytorch code.)
  • For EMA decay rate 0.999 seems to be a good starting point.
  • You can use either MSE or KL-divergence as the consistency cost function. For KL-divergence, a good consistency cost weight is often between 1.0 and 10.0. For MSE, it seems to be between the number of classes and the number of classes squared. On small datasets we saw MSE getting better results, but KL always worked pretty well too.
  • It may help to ramp up the consistency cost in the beginning over the first few epochs until the teacher network starts giving good predictions.
  • An additional trick we used in the PyTorch examples: Have two seperate logit layers at the top level. Use one for classification of labeled examples and one for predicting the teacher output. And then have an additional cost between the logits of these two predictions. The intent is the same as with the consistency cost rampup: in the beginning the teacher output may be wrong, so loosen the link between the classification prediction and the consistency cost. (See the --logit-distance-cost argument in the PyTorch implementation.)
Owner
Curious AI
Deep good. Unsupervised better.
Curious AI
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Conversational text Analysis using various NLP techniques

PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb

Rita Anjana 158 Dec 25, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022