code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Overview

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling

This repository contains our PyTorch training code, evaluation code and pretrained models for AttentiveNAS.

[Update 06/21] Recenty, we have improved AttentiveNAS using an adaptive knowledge distillation training strategy, see our AlphaNet repo for more details of this work. AlphaNet has been accepted by ICML'21.

[Update 07/21] We provide an example code for searching the best models of FLOPs vs. accuracy trade-offs at here.

For more details, please see AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling by Dilin Wang, Meng Li, Chengyue Gong and Vikas Chandra.

If you find this repo useful in your research, please consider citing our work:

@article{wang2020attentivenas,
  title={AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling},
  author={Wang, Dilin and Li, Meng and Gong, Chengyue and Chandra, Vikas},
  journal={arXiv preprint arXiv:2011.09011},
  year={2020}
}

Evaluation

To reproduce our results:

  • Please first download our pretrained AttentiveNAS models from a Google Drive path and put the pretrained models under your local folder ./attentive_nas_data

  • To evaluate our pre-trained AttentiveNAS models, from AttentiveNAS-A0 to A6, on ImageNet with a single GPU, please run:

    python test_attentive_nas.py --config-file ./configs/eval_attentive_nas_models.yml --model a[0-6]

    Expected results:

    Name MFLOPs Top-1 (%)
    AttentiveNAS-A0 203 77.3
    AttentiveNAS-A1 279 78.4
    AttentiveNAS-A2 317 78.8
    AttentiveNAS-A3 357 79.1
    AttentiveNAS-A4 444 79.8
    AttentiveNAS-A5 491 80.1
    AttentiveNAS-A6 709 80.7

Training

To train our AttentiveNAS models from scratch, please run

python train_attentive_nas.py --config-file configs/train_attentive_nas_models.yml --machine-rank ${machine_rank} --num-machines ${num_machines} --dist-url ${dist_url}

We adopt SGD training on 64 GPUs. The mini-batch size is 32 per GPU; all training hyper-parameters are specified in train_attentive_nas_models.yml.

Additional data

  • A (sub-network config, FLOPs) lookup table could be used for constructing the architecture distribution under FLOPs-constraints.
  • A accuracy predictor trained via scikit-learn, which takes a subnetwork configuration as input, and outputs its predicted accuracy on ImageNet.
    • Convert a subnetwork configuration to our accuracy predictor compatibale inputs:
        res = [cfg['resolution']]
        for k in ['width', 'depth', 'kernel_size', 'expand_ratio']:
            res += cfg[k]
        input = np.asarray(res).reshape((1, -1))
    

License

The majority of AttentiveNAS is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Once For All is licensed under the Apache 2.0 license.

Contributing

We actively welcome your pull requests! Please see CONTRIBUTING and CODE_OF_CONDUCT for more info.

Owner
Facebook Research
Facebook Research
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022