Official Pytorch Implementation of GraphiT

Related tags

Deep LearningGraphiT
Overview

GraphiT: Encoding Graph Structure in Transformers

This repository implements GraphiT, described in the following paper:

Grégoire Mialon*, Dexiong Chen*, Margot Selosse*, Julien Mairal. GraphiT: Encoding Graph Structure in Transformers.
*Equal contribution

Short Description about GraphiT

Figure from paper

GraphiT is an instance of transformers designed for graph-structured data. It takes as input a graph seen as a set of its node features, and integrates the graph structure via i) relative positional encoding using kernels on graphs and ii) encoding local substructures around each node, e.g, short paths, before adding it to the node features. GraphiT is able to outperform Graph Neural Networks in different graph classification and regression tasks, and offers promising visualization capabilities for domains where interpretability is important, e.g, in chemoinformatics.

Installation

Environment:

numpy=1.18.1
scipy=1.3.2
Cython=0.29.23
scikit-learn=0.22.1
matplotlib=3.4
networkx=2.5
python=3.7
pytorch=1.6
torch-geometric=1.7

The train folds and model weights for visualization are already provided at the correct location. Datasets will be downloaded via Pytorch geometric.

To begin with, run:

cd GraphiT
. s_env

To install GCKN, you also need to run:

make

Training GraphiT on graph classification and regression tasks

All our experimental scripts are in the folder experiments. So to start with, run cd experiments.

Classification

To train GraphiT on NCI1 with diffusion kernel, run:

python run_transformer_cv.py --dataset NCI1 --fold-idx 1 --pos-enc diffusion --beta 1.0

Here --fold-idx can be varied from 1 to 10 to train on a specified training fold. To test a selected model, just add the --test flag.

To include Laplacian positional encoding into input node features, run:

python run_transformer_cv.py --dataset NCI1 --fold-idx 1 --pos-enc diffusion --beta 1.0 --lappe --lap-dim 8

To include GCKN path features into input node features, run:

python run_transformer_gckn_cv.py --dataset NCI1 --fold-idx 1 --pos-enc diffusion --beta 1.0 --gckn-path 5

Regression

To train GraphiT on ZINC, run:

python run_transformer.py --pos-enc diffusion --beta 1.0

To include Laplacian positional encoding into input node features, run:

python run_transformer.py --pos-enc diffusion --beta 1.0 --lappe --lap-dim 8

To include GCKN path features into input node features, run:

python run_transformer_gckn.py --pos-enc diffusion --beta 1.0 --gckn-path 8

Visualizing attention scores

To visualize attention scores for GraphiT trained on Mutagenicity, run:

cd experiments
python visu_attention.py --idx-sample 10

To visualize Nitrothiopheneamide-methylbenzene, choose 10 as sample index. To visualize Aminofluoranthene, choose 2003 as sample index. If you want to test for other samples (i.e, other indexes), make sure that the model correctly predicts mutagenicity (class 0) for this sample.

Citation

To cite GraphiT, please use the following Bibtex snippet:

@misc{mialon2021graphit,
      title={GraphiT: Encoding Graph Structure in Transformers}, 
      author={Gr\'egoire Mialon and Dexiong Chen and Margot Selosse and Julien Mairal},
      year={2021},
      eprint={2106.05667},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Inria Thoth
A joint team of Inria and Laboratoire Jean Kuntzmann, we design models capable of representing visual information at scale from minimal supervision.
Inria Thoth
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021