Facial Image Inpainting with Semantic Control

Overview

Facial Image Inpainting with Semantic Control

In this repo, we provide a model for the controllable facial image inpainting task. This model enables users to intuitively edit their images by using parametric 3D faces.

The technology report is comming soon.

  • Image Inpainting results

  • Fine-grained Control

Quick Start

Installation

  • Clone the repository and set up a conda environment with all dependencies as follows
git clone https://github.com/RenYurui/Controllable-Face-Inpainting.git --recursive
cd Controllable-Face-Inpainting

# 1. Create a conda virtual environment.
conda create -n cfi python=3.6
source activate cfi
conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=10.2

# 2. install pytorch3d
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c bottler nvidiacub
git clone https://github.com/facebookresearch/pytorch3d.git
cd pytorch3d && pip install -e .

# 3. Install other dependencies
pip install -r requirements.txt

Download Prerequisite Models

  • Follow Deep3DFaceRecon to prepare ./BFM folder. Download 01_MorphableModel.mat and Expression Basis Exp_Pca.bin. Put the obtained files into the ./Deep3DFaceRecon_pytorch/BFM floder. Then link the folder to the root path.
ln -s /PATH_TO_REPO_ROOT/Deep3DFaceRecon_pytorch/BFM /PATH_TO_REPO_ROOT
  • Clone the Arcface repo
cd third_part
git clone https://github.com/deepinsight/insightface.git
cp -r ./insightface/recognition/arcface_torch/ ./

The Arcface is used to extract identity features for loss computation. Download the pre-trained model from Arcface using this link. By default, the resnet50 backbone (ms1mv3_arcface_r50_fp16) is used. Put the obtained weights into ./third_part/arcface_torch/ms1mv3_arcface_r50_fp16/backbone.pth

  • Download the pretrained weights of our model from Google Driven. Save the obtained files into folder ./result.

Inference

We provide some example images. Please run the following code for inference

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 --master_port 1234 demo.py \
--config ./config/facial_image_renderer_ffhq.yaml \
--name facial_image_renderer_ffhq \
--output_dir ./visi_result \
--input_dir ./examples/inputs \
--mask_dir ./examples/masks

Train the model from scratch

Dataset Preparation

  • Download dataset. We use Celeba-HQ and FFHQ for training and inference. Please download the datasets (image format) and put them under ./dataset folder.
  • Obtain 3D faces by using Deep3DFaceRecon. Follow the Deep3DFaceRecon repo to download the trained weights. And save it as: ./Deep3DFaceRecon_pytorch/checkpoints/face_recon/epoch_20.pth
# 1. Extract keypoints from the face images for cropping.
cd scripts
# extracted keypoints from celeba
python extract_kp.py \
--data_root PATH_TO_CELEBA_ROOT \
--output_dir PATH_TO_KEYPOINTS \
--dataset celeba \
--device_ids 0,1 \
--workers 6

# 2. Extract 3DMM coefficients from the face images.
cd .. #repo root
# we provide some scripts for easy of use. However, one can use the original repo to extract the coefficients.
cp scripts/inference_options.py ./Deep3DFaceRecon_pytorch/options
cp scripts/face_recon.py ./Deep3DFaceRecon_pytorch
cp scripts/facerecon_inference_model.py ./Deep3DFaceRecon_pytorch/models
cp scripts/pytorch_3d.py ./Deep3DFaceRecon_pytorch/util
ln -s /PATH_TO_REPO_ROOT/third_part/arcface_torch /PATH_TO_REPO_ROOT/Deep3DFaceRecon_pytorch/models

cd Deep3DFaceRecon_pytorch

python face_recon.py \
--input_dir PATH_TO_CELEBA_ROOT \
--keypoint_dir PATH_TO_KEYPOINTS \
--output_dir PATH_TO_3DMM_COEFFICIENT \
--inference_batch_size 100 \
--name=face_recon \
--dataset_name celeba \
--epoch=20 \
--model facerecon_inference

# 3. Save images and the coefficients into a lmdb file.
cd .. #repo root
python prepare_data.py \
--root PATH_TO_CELEBA_ROOT \
--coeff_file PATH_TO_3DMM_COEFFICIENT \
--dataset celeba \
--out PATH_TO_CELEBA_LMDB_ROOT

Train The Model

# we first train the semantic_descriptor_recommender
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port 1234 train.py \
--config ./config/semantic_descriptor_recommender_celeba.yaml \
--name semantic_descriptor_recommender_celeba

# Then, we trian the facial_image_renderer for image inpainting
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port 1234 train.py \
--config ./config/facial_image_renderer_celeba.yaml \
--name facial_image_renderer_celeba
Owner
Ren Yurui
Ren Yurui
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Fadi Boutros 40 Dec 22, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022