Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Overview

Fellowship Prediction

GitHub Profile Comparative Analysis Tool Built with BentoML

Fellowship Prediction Header Logo

Table of Contents:

Winner

This project won the MLH Fellowship Orientation Hackathon - Batch 4 along with other great projects by MLH Fellows. We highly suggest you check them out.

Features

Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Try it now!

Demo Git

Provides you with an extensive analysis on the following features of your profile:

Feature Description
Commits Number of total commits the user made
Contributions Number of repositories where the user made contributions
Followers Number of followers the user has
Forks Number of forks the user has in their repositories
Issues Number of issues the user has raised
Organizations Number of organizations the user is a part of
Repos Number of repositories the user has
Stars Number of stars the user has on their repositories

And gives you a comprehensive score of how similar your GitHub Profile is to an average MLH Fellow's GitHub.

It also shows your statistics in a user-friendly data visualization format for you to gauge the range of your skills and become the next MLH Fellow!

Disclaimer

Dear user, building this application, we were trying our best to provide with data insights into things you can improve through your GitHub Profile. This is a hackakthon project that is built by Open Source Fellows and is not directly affiliated with MLH in any capacity. The positive score in your application does not guarantee your chances of becoming a fellow because there are external things apart from GitHub that affect the decision process.

We also hope that you understand that your GitHub Stats do not affect your value to the community as a developer. We all have different paths to success in our lives, and they do not necessarily involve high scores. Regardless of your numbers, you are going to succeed in your journey.

Technologies Used

Tech Stack Used

We used the following technologies:

  • BentoML along with Heroku to build an API endpoint that calculates the comprehensive score for the user based on a simple query.
  • Flask deployed to Heroku to setup a bridge between the frameworks and collect the input data.
  • React.js served on Firebase to provide user-friendly UI for future MLH fellows to use.

Contributing

To contribute to this open-source project, follow these steps:

  1. Fork the repository.
  2. Create a branch: git checkout -b <branch_name>.
  3. Make your changes and commit them: git commit -m '<commit_message>'.
  4. Push to your branch: git push origin <project_name>/<location>.
  5. Create a pull request.

To work on BentoML:

  1. Go to model/bento_deploy to find necessary files.
  2. Read BentoML Start Guide to learn more about the files.
  3. Improve the BentoML Interface to provide our users with a more accurate score.
  4. Create the BentoML prediction service with python bento_packer.py and commit the saved class from bentoml get IrisClassifier:latest --print-location --quiet.

To work on the Back-End:

  1. Consult scr/server and its README.
  2. Make contributions.

Alternatively: Reach out to one of the Project Contributors for questions.

Demo

YouTube Logo that Leads to our demo

Motivation

We built this project because we wanted to help prospective MLH Fellows with their progress toward a better GitHub profile with solid projects and a record of active work. We also wanted to give them some insights into what an average fellow at MLH looks like.

When we were just aspiring to become MLH Fellows, we would look for different sources of information to know what MLH is looking for in their fellows and better ways to prepare. So we tried to address this issue and hopefully support future fellows on their way to success.

However, we make an important notion that your GitHub Profile does not define you as a developer. Our tool is simply to let you see into the data for areas of potential improvement and keep working toward your goals. We do not consider things like:

  • Personal communication levels
  • Spot availability
  • Match in project interests

The mentioned points affect your chances on becoming a fellow. Unfortunately, there is no way to take them into consideration.

Team

Damir Temir


Damir Temir

Working on the project, I learned the basics of BentoML and deploying the server model to the cloud like Heroku. I also gained some experience in Data Mining and Processing, which is an invaluable skill toward my journey to Machine Learning Engineering.

The contributions I made are:

  • Wrote Jupyter Notebooks where we showcase our work with the GitHub API.
  • Set up a Git repository with active GitHub Projects and proper infrastructure.
  • Mined data on more than 650 fellows in the MLH Fellowship organization.
  • Created a BentoML API node deployed to Heroku for querying.

Aymen Bennabi


Aymen Bennabi

During the hackathon I majorly worked on the Front-End part of the project. I created a friendly UI/UX to collect data and visualize the results. Also, I helped a little bit with the Back-End by creating a facade API to make working with GitHub easier. The new interface adds a level of abstraction that mainly focuses on quantitative data that we needed to do the statistical analysis.

I really enjoyed the Orientation Hackathon. I now feel more confident working with Git/GitHub. I also started learning about functional programming base API (OCamal/dream).

Tasha Kim


Aymen Bennabi

Utilizing BentoML gave us a flexible, high-performance framework to serve, manage, and deploy our model to predict MLH fellowship status using user's GitHub profiles. In particular, I enjoyed working with ML frameworks like Matplotlib, Seaborn, and Pandas, as well as Cloud native deployment services, and API serving that were all packaged into a single service.

Some of my contributions were:

  • Implemented the ANNOVA model as an alternative improved statiscal comparison to the one we are using now. Our current one works fine, but we can use this in the case we want a more rigorous and detailed comparison (multiple pairwise comparison (post hoc comparison) analysis for all unplanned comparison using Tukey’s honestly significantly differenced (HSD) test).
  • Built a CI (continuous integration) pipeline for build, run, and testing of our node app as well as python app using github actions.
  • Implemented method to compute average statistics for aggregated mlh fellow data.

Shout out to everyone in our team!

Eyimofe Ogunbiyi


Eyimofe Bennabi

I worked on the Back-End Server for the project and the deployment pipeline on Heroku. I was able to use the Flask Rest Framework for the Back-End which was a new experience for me.

License

This project is served under the MIT License.

MIT License

Copyright (c) 2021 Damir Temir

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
A proof of concept ai-powered Recaptcha v2 solver

Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj

Nate 60 Dec 20, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022