Submanifold sparse convolutional networks

Overview

Submanifold Sparse Convolutional Networks

This is the PyTorch library for training Submanifold Sparse Convolutional Networks.

Spatial sparsity

This library brings Spatially-sparse convolutional networks to PyTorch. Moreover, it introduces Submanifold Sparse Convolutions, that can be used to build computationally efficient sparse VGG/ResNet/DenseNet-style networks.

With regular 3x3 convolutions, the set of active (non-zero) sites grows rapidly:
submanifold
With Submanifold Sparse Convolutions, the set of active sites is unchanged. Active sites look at their active neighbors (green); non-active sites (red) have no computational overhead:
submanifold
Stacking Submanifold Sparse Convolutions to build VGG and ResNet type ConvNets, information can flow along lines or surfaces of active points.

Disconnected components don't communicate at first, although they will merge due to the effect of strided operations, either pooling or convolutions. Additionally, adding ConvolutionWithStride2-SubmanifoldConvolution-DeconvolutionWithStride2 paths to the network allows disjoint active sites to communicate; see the 'VGG+' networks in the paper.
Strided Convolution, convolution, deconvolution
Strided Convolution, convolution, deconvolution
From left: (i) an active point is highlighted; a convolution with stride 2 sees the green active sites (ii) and produces output (iii), 'children' of hightlighted active point from (i) are highlighted; a submanifold sparse convolution sees the green active sites (iv) and produces output (v); a deconvolution operation sees the green active sites (vi) and produces output (vii).

Dimensionality and 'submanifolds'

SparseConvNet supports input with different numbers of spatial/temporal dimensions. Higher dimensional input is more likely to be sparse because of the 'curse of dimensionality'.

Dimension Name in 'torch.nn' Use cases
1 Conv1d Text, audio
2 Conv2d Lines in 2D space, e.g. handwriting
3 Conv3d Lines and surfaces in 3D space or (2+1)D space-time
4 - Lines, etc, in (3+1)D space-time

We use the term 'submanifold' to refer to input data that is sparse because it has a lower effective dimension than the space in which it lives, for example a one-dimensional curve in 2+ dimensional space, or a two-dimensional surface in 3+ dimensional space.

In theory, the library supports up to 10 dimensions. In practice, ConvNets with size-3 SVC convolutions in dimension 5+ may be impractical as the number of parameters per convolution is growing exponentially. Possible solutions include factorizing the convolutions (e.g. 3x1x1x..., 1x3x1x..., etc), or switching to a hyper-tetrahedral lattice (see Sparse 3D convolutional neural networks).

Hello World

SparseConvNets can be built either by defining a function that inherits from torch.nn.Module or by stacking modules in a sparseconvnet.Sequential:

import torch
import sparseconvnet as scn

# Use the GPU if there is one, otherwise CPU
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

model = scn.Sequential().add(
    scn.SparseVggNet(2, 1,
                     [['C', 8], ['C', 8], ['MP', 3, 2],
                      ['C', 16], ['C', 16], ['MP', 3, 2],
                      ['C', 24], ['C', 24], ['MP', 3, 2]])
).add(
    scn.SubmanifoldConvolution(2, 24, 32, 3, False)
).add(
    scn.BatchNormReLU(32)
).add(
    scn.SparseToDense(2, 32)
).to(device)

# output will be 10x10
inputSpatialSize = model.input_spatial_size(torch.LongTensor([10, 10]))
input_layer = scn.InputLayer(2, inputSpatialSize)

msgs = [[" X   X  XXX  X    X    XX     X       X   XX   XXX   X    XXX   ",
         " X   X  X    X    X   X  X    X       X  X  X  X  X  X    X  X  ",
         " XXXXX  XX   X    X   X  X    X   X   X  X  X  XXX   X    X   X ",
         " X   X  X    X    X   X  X     X X X X   X  X  X  X  X    X  X  ",
         " X   X  XXX  XXX  XXX  XX       X   X     XX   X  X  XXX  XXX   "],

        [" XXX              XXXXX      x   x     x  xxxxx  xxx ",
         " X  X  X   XXX       X       x   x x   x  x     x  x ",
         " XXX                X        x   xxxx  x  xxxx   xxx ",
         " X     X   XXX       X       x     x   x      x    x ",
         " X     X          XXXX   x   x     x   x  xxxx     x ",]]


# Create Nx3 and Nx1 vectors to encode the messages above:
locations = []
features = []
for batchIdx, msg in enumerate(msgs):
    for y, line in enumerate(msg):
        for x, c in enumerate(line):
            if c == 'X':
                locations.append([y, x, batchIdx])
                features.append([1])
locations = torch.LongTensor(locations)
features = torch.FloatTensor(features).to(device)

input = input_layer([locations,features])
print('Input SparseConvNetTensor:', input)
output = model(input)

# Output is 2x32x10x10: our minibatch has 2 samples, the network has 32 output
# feature planes, and 10x10 is the spatial size of the output.
print('Output SparseConvNetTensor:', output)

Examples

Examples in the examples folder include

For example:

cd examples/Assamese_handwriting
python VGGplus.py

Setup

Tested with PyTorch 1.3, CUDA 10.0, and Python 3.3 with Conda.

conda install pytorch torchvision cudatoolkit=10.0 -c pytorch # See https://pytorch.org/get-started/locally/
git clone [email protected]:facebookresearch/SparseConvNet.git
cd SparseConvNet/
bash develop.sh

To run the examples you may also need to install unrar:

apt-get install unrar

License

SparseConvNet is BSD licensed, as found in the LICENSE file. Terms of use. Privacy

Links

  1. ICDAR 2013 Chinese Handwriting Recognition Competition 2013 First place in task 3, with test error of 2.61%. Human performance on the test set was 4.81%. Report
  2. Spatially-sparse convolutional neural networks, 2014 SparseConvNets for Chinese handwriting recognition
  3. Fractional max-pooling, 2014 A SparseConvNet with fractional max-pooling achieves an error rate of 3.47% for CIFAR-10.
  4. Sparse 3D convolutional neural networks, BMVC 2015 SparseConvNets for 3D object recognition and (2+1)D video action recognition.
  5. Kaggle plankton recognition competition, 2015 Third place. The competition solution is being adapted for research purposes in EcoTaxa.
  6. Kaggle Diabetic Retinopathy Detection, 2015 First place in the Kaggle Diabetic Retinopathy Detection competition.
  7. Submanifold Sparse Convolutional Networks, 2017 Introduces deep 'submanifold' SparseConvNets.
  8. Workshop on Learning to See from 3D Data, 2017 First place in the semantic segmentation competition. Report
  9. 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks, 2017 Semantic segmentation for the ShapeNet Core55 and NYU-DepthV2 datasets, CVPR 2018
  10. Unsupervised learning with sparse space-and-time autoencoders (3+1)D space-time autoencoders
  11. ScanNet 3D semantic label benchmark 2018 0.726 average IOU.
  12. MinkowskiEngine is an alternative implementation of SparseConvNet; 0.736 average IOU for ScanNet.
  13. SpConv: PyTorch Spatially Sparse Convolution Library is an alternative implementation of SparseConvNet.
  14. Live Semantic 3D Perception for Immersive Augmented Reality describes a way to optimize memory access for SparseConvNet.
  15. OccuSeg real-time object detection using SparseConvNets.
  16. TorchSparse implements 3D submanifold convolutions.
  17. TensorFlow 3D implements submanifold convolutions.

Citations

If you find this code useful in your research then please cite:

3D Semantic Segmentation with Submanifold Sparse Convolutional Networks, CVPR 2018
Benjamin Graham,
Martin Engelcke,
Laurens van der Maaten,

@article{3DSemanticSegmentationWithSubmanifoldSparseConvNet,
  title={3D Semantic Segmentation with Submanifold Sparse Convolutional Networks},
  author={Graham, Benjamin and Engelcke, Martin and van der Maaten, Laurens},
  journal={CVPR},
  year={2018}
}

and/or

Submanifold Sparse Convolutional Networks, https://arxiv.org/abs/1706.01307
Benjamin Graham,
Laurens van der Maaten,

@article{SubmanifoldSparseConvNet,
  title={Submanifold Sparse Convolutional Networks},
  author={Graham, Benjamin and van der Maaten, Laurens},
  journal={arXiv preprint arXiv:1706.01307},
  year={2017}
}
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022