Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Related tags

Deep LearningDSRL
Overview

Dual super-resolution learning for semantic segmentation

2021-01-02 Subpixel Update

Happy new year! The 2020-12-29 update of SISR with subpixel conv performs bad in my experiment so I did some changes to it.

The former subpixel version is depreciated now. Click here to learn more. If you are using the main branch then you can just ignore this message.

2020-12-29 New branch: subpixel

  • In this new branch, SISR path changes to follow the design of Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network, CVPR 2016. The main branch still uses Deconv so if you prefer the older version you can simply ignore this update.
  • I haven't run a full test on this new framework yet so I'm still not sure about it's performance on validation set. Please let me know if you find this new framework performs better. Thank you. :)

2020-12-15 Pretrained Weights Uploaded (Only for the main branch)

  • See Google Drive (Please note that you don't have to unzip this file.)
  • Use the pretrained weights by train.py --resume 'path/to/weights'

2020-10-31 Good News! I achieved an mIoU of 0.6787 in the newest experiment(the experiment is still running and the final mIoU may be even higher)!

  • So the FA module should be places after each path's final output.
  • The FTM should be 19 channel -> 3 channel
  • Hyper-Parameter fine-tuning

It's amazing that the final model converges at a extremely fast speed. Now the codes are all set, just clone this repo and run train.py!

And thanks for the reminder of @XinruiYuan, currently this repo also differs from the original paper in the architecture of SISR path. I will be working on it after finishing my homework.

2020-10-22 First commit

I implemented the framework proposed in this paper since the authors' code is still under legal scan and i just can't wait to see the results. This repo is based on Deeplab v3+ and Cityscapes, and i still have problems about the FA module.

  • so the code is runnable? yes. just run train.py directly and you can see DSRL starts training.(of course change the dataset path. See insturctions in the Deeplab v3+ part below.)

  • any difference from the paper's proposed method? Actually yes. It's mainly about the FA module. I tried several mothods such as:

    • 19 channel SSSR output -> feature transform module -> 3 channel output -> calculate FAloss with 3 channel SISR output. Result is like a disaster
    • 19 channel SSSR last_conv(see the code and you'll know what it is) feature -> feature transform module -> calculate FAloss with 19 channel SISR last_conv feature. still disaster.
    • 19 channel SSSR last_conv(see the code and you'll know what it is) feature -> feature transform module -> calculate FAloss with 19 channel SISR last_conv feature, but no more normalization in the FA module. Seems not bad, but still cannot surpass simple original Deeplab v3+
    • Besides, this project use a square input(default 512*512) which is cropped from the original image.
  • so my results? mIoU about 0.6669 when use the original Deeplab v3+. 0.6638 when i add the SISR path but no FA module. and about 0.62 after i added the FA module.

The result doesn't look good, but this may because of the differences of the FA module.(but why the mIoU decreased after i added the SISR path)

Currently the code doesn't use normalization in FA module. If you want to try using them, please cancel the comment of line 16,18,23,25 in 'utils/fa_loss.py'

Please imform me if you have any questions about the code.

below are discriptions about Deeplab v3+(from the original repo).


pytorch-deeplab-xception

Update on 2018/12/06. Provide model trained on VOC and SBD datasets.

Update on 2018/11/24. Release newest version code, which fix some previous issues and also add support for new backbones and multi-gpu training. For previous code, please see in previous branch

TODO

  • Support different backbones
  • Support VOC, SBD, Cityscapes and COCO datasets
  • Multi-GPU training
Backbone train/eval os mIoU in val Pretrained Model
ResNet 16/16 78.43% google drive
MobileNet 16/16 70.81% google drive
DRN 16/16 78.87% google drive

Introduction

This is a PyTorch(0.4.1) implementation of DeepLab-V3-Plus. It can use Modified Aligned Xception and ResNet as backbone. Currently, we train DeepLab V3 Plus using Pascal VOC 2012, SBD and Cityscapes datasets.

Results

Installation

The code was tested with Anaconda and Python 3.6. After installing the Anaconda environment:

  1. Clone the repo:

    git clone https://github.com/jfzhang95/pytorch-deeplab-xception.git
    cd pytorch-deeplab-xception
  2. Install dependencies:

    For PyTorch dependency, see pytorch.org for more details.

    For custom dependencies:

    pip install matplotlib pillow tensorboardX tqdm

Training

Follow steps below to train your model:

  1. Configure your dataset path in mypath.py.

  2. Input arguments: (see full input arguments via python train.py --help):

    usage: train.py [-h] [--backbone {resnet,xception,drn,mobilenet}]
                [--out-stride OUT_STRIDE] [--dataset {pascal,coco,cityscapes}]
                [--use-sbd] [--workers N] [--base-size BASE_SIZE]
                [--crop-size CROP_SIZE] [--sync-bn SYNC_BN]
                [--freeze-bn FREEZE_BN] [--loss-type {ce,focal}] [--epochs N]
                [--start_epoch N] [--batch-size N] [--test-batch-size N]
                [--use-balanced-weights] [--lr LR]
                [--lr-scheduler {poly,step,cos}] [--momentum M]
                [--weight-decay M] [--nesterov] [--no-cuda]
                [--gpu-ids GPU_IDS] [--seed S] [--resume RESUME]
                [--checkname CHECKNAME] [--ft] [--eval-interval EVAL_INTERVAL]
                [--no-val]
    
  3. To train deeplabv3+ using Pascal VOC dataset and ResNet as backbone:

    bash train_voc.sh
  4. To train deeplabv3+ using COCO dataset and ResNet as backbone:

    bash train_coco.sh

Acknowledgement

PyTorch-Encoding

Synchronized-BatchNorm-PyTorch

drn

Owner
Sam
Get yourself a cup of tea. ˊ_>ˋ旦
Sam
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022