Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

Related tags

Deep Learningskflow
Overview

SkFlow has been moved to Tensorflow.

SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. The development will continue there. Please submit any issues and pull requests to Tensorflow repository instead.

This repository will ramp down, including after next Tensorflow release we will wind down code here. Please see instructions on most recent installation here.

Comments
  • How do I do multilabel image classification?

    How do I do multilabel image classification?

    Do I have to make changes in the multioutput file? I ideally want to train any model, like Inception, on my training data which has multi labels. How do I do that?

    help wanted examples 
    opened by unography 21
  • Add early stopping and reporting based on validation data

    Add early stopping and reporting based on validation data

    This PR allows a user to specify a validation dataset that are used for early stopping (and reporting). The PR was created to address issue 85

    I made changes in 3 places.

    1. The trainer now takes a dictionary containing the validation data (in the same format as the output of the data feeder's get_dict_fn).
    2. The fit method now takes arguments for val_X and val_y. It converts these into the correct format for the trainer.
    3. The example file digits.py now uses early stopping, by supplying val_X and val_y.

    I can add early stopping to other examples if this approach looks good, though their behavior should not otherwise be affected by the current PR.

    cla: yes 
    opened by dansbecker 14
  • Class weight support

    Class weight support

    Hi,

    I am using skflow.ops.dnn to classify two - classes dataset (True and False). The percentage of True example is very small, so I have an imbalanced dataset.

    It seems to me that one way to resolve the issue is to use weighted classes. However, when I look to the implementation of skflow.ops.dnn, I do not know how could I do weighted classes with DNN.

    Is it possible to do that with skflow, or is there another technique to deal with imbalanced dataset problem in skflow?

    Thanks

    enhancement 
    opened by vinhqdang 13
  • Added verbose option

    Added verbose option

    I added an option to control the "verbosity". For this, I added the parameter "verbose" in the init method of the init.py file and to the train function in the trainers.py file. In addition, I passed this argument to the "self._trainer.train()" call in the init file and added a condition to make the prints in the trainer.py file.

    cla: no 
    opened by ivallesp 12
  • Predict batch size default

    Predict batch size default

    This changes the default batch size for prediction to be the same as for training, enabling efficient grid search. Previously GridSearchCV would try to make predictions in a single batch, which could take a lot of memory.

    This also adds a simple example of using skflow with GridSearchCV.

    cla: no 
    opened by mheilman 11
  • Add example accessing of weights

    Add example accessing of weights

    It wasn't clear how to access weights using classifier.get_tensor_value('foo') syntax. This adds some examples for the CNN model. They were figured out by logging the training as though for using TensorBoard, and then running strings on the logfile to look for the right namespace.

    Is there a better way to access these weights? Or to learn their names? The logging must walk through the graph and record these names. Maybe if there were a way to quickly list all the names, that'd be enough for advanced users to figure it out.

    cla: yes 
    opened by dvbuntu 10
  • Plotting neural network built by skflow

    Plotting neural network built by skflow

    Hi,

    Sorry I asked too much.

    I think plotting is always a nice feature. Is it possible right now for skflow (or can we do that through tensorflow directly)?

    opened by vinhqdang 10
  • move monitor and logdir arguments to init

    move monitor and logdir arguments to init

    opened by mheilman 8
  • Exception when running language model example

    Exception when running language model example

    Hi,

    Thanks for making this tool. It will definitely make things easier for NN newcomers.

    I just tried running your language model example and got the following exception:

    Traceback (most recent call last):
      File "test.py", line 84, in <module>
        estimator.fit(X, y)
      File "/Users/aleksandar/tensorflow/lib/python3.5/site-packages/skflow/estimators/base.py", line 243, in fit
        feed_params_fn=self._data_feeder.get_feed_params)
      File "/Users/aleksandar/tensorflow/lib/python3.5/site-packages/skflow/trainer.py", line 114, in train
        feed_dict = feed_dict_fn()
      File "/Users/aleksandar/tensorflow/lib/python3.5/site-packages/skflow/io/data_feeder.py", line 307, in _feed_dict_fn
        inp[i, :] = six.next(self.X)
    StopIteration
    

    I made sure that my python distribution has the correct version of six. I tried running it both in a virtual environment and in a normal Python 3 distro. Any ideas what might be causing this?

    opened by savkov 7
  • another ValidationMonitor with validation(+early stopping) per epoch

    another ValidationMonitor with validation(+early stopping) per epoch

    From what I understand, the existing ValidationMonitor performs validation every [print_steps] steps, and checks for stop condition every [early_stopping_rounds] steps. I'd like to add another ValidationMonitor that performs validation once and checks for stoping condition once every epoch. Is this the recommended practice in machine learning regarding validation and early stopping? I mean I'd like to add a fit process something like this:

    def fit(self, x_train, y_train, x_validate, y_validate):
        while (current_validation_loss < previous_validation_loss):
            estimator.train_one_more_epoch(x_train, y_train)
            previous_validation_loss = current_validation_loss
            current_validation_loss = some_error(y_validate, estimator.predict(x_validate))
    
    enhancement help wanted 
    opened by alanyuchenhou 7
  • Example of language model

    Example of language model

    Add an example of language model (RNN). For example character level on sheikspear book (similar to https://github.com/sherjilozair/char-rnn-tensorflow).

    examples 
    opened by ilblackdragon 7
  • .travis.yml: The 'sudo' tag is now deprecated in Travis CI

    .travis.yml: The 'sudo' tag is now deprecated in Travis CI

    opened by cclauss 1
  • Why hasn't this repo been archived yet?

    Why hasn't this repo been archived yet?

    New versions of TF have already been released since the last commit to this repo. As far as I've understood, after having read the README file of this project, you intended to close this repo. So, why hasn't it been done yet?

    opened by nbro 0
Releases(v0.1)
  • v0.1(Feb 14, 2016)

Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
PlenOctree Extraction algorithm

PlenOctrees_NeRF-SH This is an implementation of the Paper PlenOctrees for Real-time Rendering of Neural Radiance Fields. Not only the code provides t

49 Nov 05, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022