Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Overview

Dictionary Learning for Clustering on Hyperspectral Images

Overview

Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries. This framework was created as a part of the project I presented for completion of my Computer Science Honours' degree at the University of the Witwatersrand.
A paper was produced for this research, it was published by Springer's Journal of Signal, Image and Video Processing. The paper can be read for free here: https://rdcu.be/b5Vsq. Please look below for citation details.

Authored by: Joshua Bruton
Supervised by: Dr. Hairong Wang

Contents

This repository contains implementations or usage of the following techniques:

  1. Online Dictionary Learning
  2. Orthogonal Matching Pursuit with dynamic stopping criteria
  3. Spectral Clustering (sk-learn)

The repository also contains the SalinasA hyperspectral image. This and other hyperspectral data sets are available on the Grupo de Inteligencia Computacional website here.

Usage

I have created a requirements file. I recommend using pipenv with Python 3.6 to open a shell and then using

pipenv install -r requirements.txt

and requirements should be met. Then just run:

python demonstration.py

and the demonstration should run. It will train a dictionary and then use it for spectral clustering as discussed in the paper.

Previous work

One working discriminative dictionary has been provided in the repository, all of the others are available as assets on Comet.ml. They were all trained using the implementation of ODL provided in this repository. Bare in mind that dictionary learning is extremely sensitive to the initialisation of the dictionary; results for different dictionaries will vary drastically.

scikit-learn was used extensively throughout this project for more stable implementations. Thanks also go to Dave Biagioni, mitscha, and the authors of this article.

Future work

This repository is licensed under the GNU General Public License and therefore is completely free to use for any project you see fit. If you do use or learn from our work, we would appreciate if you cited the following details:

@article{10.1007/s11760-020-01750-z, 
  author = {Bruton, Joshua and Wang, Hairong}, 
  title = {{Dictionary learning for clustering on hyperspectral images}}, 
  issn = {1863-1703}, 
  doi = {10.1007/s11760-020-01750-z},
  pages = {1--7}, 
  journal = {Signal, Image and Video Processing}, 
  year = {2020}
}

Or:
Bruton, J., Wang, H. Dictionary learning for clustering on hyperspectral images. SIViP (2020). https://doi.org/10.1007/s11760-020-01750-z

The paper can be read for free.

Suggestions

If there are any pressing problems with the code please open an issue and I will attend to it as timeously as is possible.

Owner
Joshua Bruton
MSc. Computer Science student at the University of the Witwatersrand. Co-founder of Educess.
Joshua Bruton
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022