This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Overview

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021)

Introduction

This repository is the offical Pytorch implementation of ContextPose, Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021). Below is the example pipeline of using ContextPose for 3D pose estimation. overall pipeline

Quick start

Environment

This project is developed using >= python 3.5 on Ubuntu 16.04. NVIDIA GPUs are needed.

Installation

  1. Clone this repo, and we'll call the directory that you cloned as ${ContextPose_ROOT}.
  2. Install dependences.
    1. Install pytorch >= v1.4.0 following official instruction.
    2. Install other packages. This project doesn't have any special or difficult-to-install dependencies. All installation can be down with:
    pip install -r requirements.txt
  3. Download data following the next section. In summary, your directory tree should be like this
${ContextPose_ROOT}
├── data
├── experiments
├── mvn
├── logs 
├── README.md
├── process_h36m.sh
├── requirements.txt
├── train.py
`── train.sh

Data

Note: We provide the training and evaluation code on Human3.6M dataset. We do NOT provide the source data. We do NOT own the data or have permission to redistribute the data. Please download according to the official instructions.

Human3.6M

  1. Install CDF C Library by following (https://stackoverflow.com/questions/37232008/how-read-common-data-format-cdf-in-python/58167429#58167429), which is neccessary for processing Human3.6M data.
  2. Download and preprocess the dataset by following the instructions in mvn/datasets/human36m_preprocessing/README.md.
  3. To train ContextPose model, you need rough estimations of the pelvis' 3D positions both for train and val splits. In the paper we use the precalculated 3D skeletons estimated by the Algebraic model proposed in learnable-triangulation (which is an opensource repo and we adopt their Volumetric model to be our baseline.) All pretrained weights and precalculated 3D skeletons can be downloaded at once from here and placed to ./data/pretrained. Here, we fine-tuned the pretrained weight on the Human3.6M dataset for another 20 epochs, please download the weight from here and place to ./data/pretrained/human36m.
  4. We provide the limb length mean and standard on the Human3.6M training set, please download from here and place to ./data/human36m/extra.
  5. Finally, your data directory should be like this (for more detailed directory tree, please refer to README.md)
${ContextPose_ROOT}
|-- data
    |-- human36m
    |   |-- extra
    |   |   | -- una-dinosauria-data
    |   |   | -- ...
    |   |   | -- mean_and_std_limb_length.h5
    |   `-- ...
    `-- pretrained
        |-- human36m
            |-- human36m_alg_10-04-2019
            |-- human36m_vol_softmax_10-08-2019
            `-- backbone_weights.pth

Train

Every experiment is defined by .config files. Configs with experiments from the paper can be found in the ./experiments directory. You can use the train.sh script or specifically:

Single-GPU

To train a Volumetric model with softmax aggregation using 1 GPU, run:

python train.py \
  --config experiments/human36m/train/human36m_vol_softmax_single.yaml \
  --logdir ./logs

The training will start with the config file specified by --config, and logs (including tensorboard files) will be stored in --logdir.

Multi-GPU

Multi-GPU training is implemented with PyTorch's DistributedDataParallel. It can be used both for single-machine and multi-machine (cluster) training. To run the processes use the PyTorch launch utility.

To train our model using 4 GPUs on single machine, run:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=2345 --sync_bn\
  train.py  \
  --config experiments/human36m/train/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Evaluation

After training, you can evaluate the model. Inside the same config file, add path to the learned weights (they are dumped to logs dir during training):

model:
    init_weights: true
    checkpoint: {PATH_TO_WEIGHTS}

Single-GPU

Run:

python train.py \
  --eval --eval_dataset val \
  --config experiments/human36m/eval/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Multi-GPU

Using 4 GPUs on single machine, Run:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=2345 \
  train.py  --eval --eval_dataset val \
  --config experiments/human36m/eval/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Argument --eval_dataset can be val or train. Results can be seen in logs directory or in the tensorboard.

Results & Model Zoo

  • We evaluate ContextPose on two available large benchmarks: Human3.6M and MPI-INF-3DHP.
  • To get the results reported in our paper, you can download the weights and place to ./logs.
Dataset to be evaluated Weights Results
Human3.6M link 43.4mm (MPJPE)
MPI-INF-3DHP link 81.5 (PCK), 43.6 (AUC)
  • For H36M, the main metric is MPJPE (Mean Per Joint Position Error) which is L2 distance averaged over all joints. To get the result, run as stated above.
  • For 3DHP, Percentage of Correctly estimated Keypoints (PCK) as well as Area Under the Curve (AUC) are reported. Note that we directly apply our model trained on H36M dataset to 3DHP dataset without re-training to evaluate the generalization performance. To prevent from over-fitting to the H36M-style appearance, we only change the training strategy that we fix the backbone to train 20 epoch before we train the whole network end-to-end. If you want to eval on MPI-INF-3DHP, you can save the results and use the official evaluation code in Matlab.

Human3.6M

MPI-INF-3DHP

Citation

If you use our code or models in your research, please cite with:

@article{ma2021context,
  title={Context Modeling in 3D Human Pose Estimation: A Unified Perspective},
  author={Ma, Xiaoxuan and Su, Jiajun and Wang, Chunyu and Ci, Hai and Wang, Yizhou},
  journal={arXiv preprint arXiv:2103.15507},
  year={2021}
} 

Acknowledgement

This repo is built on https://github.com/karfly/learnable-triangulation-pytorch. Part of the data are provided by https://github.com/una-dinosauria/3d-pose-baseline.

Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
571 Dec 25, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022