A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

Overview

GFNet-Pytorch (NeurIPS 2020)

This repo contains the official code and pre-trained models for the glance and focus network (GFNet).

Citation

@inproceedings{NeurIPS2020_7866,
        title = {Glance and Focus: a Dynamic Approach to Reducing Spatial Redundancy in Image Classification},
       author = {Wang, Yulin and Lv, Kangchen and Huang, Rui and Song, Shiji and Yang, Le and Huang, Gao},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
         year = {2020},
}

Update on 2020/10/08: Release Pre-trained Models and the Inference Code on ImageNet.

Update on 2020/12/28: Release Training Code.

Introduction

Inspired by the fact that not all regions in an image are task-relevant, we propose a novel framework that performs efficient image classification by processing a sequence of relatively small inputs, which are strategically cropped from the original image. Experiments on ImageNet show that our method consistently improves the computational efficiency of a wide variety of deep models. For example, it further reduces the average latency of the highly efficient MobileNet-V3 on an iPhone XS Max by 20% without sacrificing accuracy.

Results

  • Top-1 accuracy on ImageNet v.s. Multiply-Adds

  • Top-1 accuracy on ImageNet v.s. Inference Latency (ms) on an iPhone XS Max

  • Visualization

Pre-trained Models

Backbone CNNs Patch Size T Links
ResNet-50 96x96 5 Tsinghua Cloud / Google Drive
ResNet-50 128x128 5 Tsinghua Cloud / Google Drive
DenseNet-121 96x96 5 Tsinghua Cloud / Google Drive
DenseNet-169 96x96 5 Tsinghua Cloud / Google Drive
DenseNet-201 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-600MF 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-800MF 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-1.6GF 96x96 5 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.00) 96x96 3 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.00) 128x128 3 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.25) 128x128 3 Tsinghua Cloud / Google Drive
EfficientNet-B2 128x128 4 Tsinghua Cloud / Google Drive
EfficientNet-B3 128x128 4 Tsinghua Cloud / Google Drive
EfficientNet-B3 144x144 4 Tsinghua Cloud / Google Drive
  • What are contained in the checkpoints:
**.pth.tar
├── model_name: name of the backbone CNNs (e.g., resnet50, densenet121)
├── patch_size: size of image patches (i.e., H' or W' in the paper)
├── model_prime_state_dict, model_state_dict, fc, policy: state dictionaries of the four components of GFNets
├── model_flops, policy_flops, fc_flops: Multiply-Adds of inferring the encoder, patch proposal network and classifier for once
├── flops: a list containing the Multiply-Adds corresponding to each length of the input sequence during inference
├── anytime_classification: results of anytime prediction (in Top-1 accuracy)
├── dynamic_threshold: the confidence thresholds used in budgeted batch classification
├── budgeted_batch_classification: results of budgeted batch classification (a two-item list, [0] and [1] correspond to the two coordinates of a curve)

Requirements

  • python 3.7.7
  • pytorch 1.3.1
  • torchvision 0.4.2
  • pyyaml 5.3.1 (for RegNets)

Evaluate Pre-trained Models

Read the evaluation results saved in pre-trained models

CUDA_VISIBLE_DEVICES=0 python inference.py --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 0

Read the confidence thresholds saved in pre-trained models and infer the model on the validation set

CUDA_VISIBLE_DEVICES=0 python inference.py --data_url PATH_TO_DATASET --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 1

Determine confidence thresholds on the training set and infer the model on the validation set

CUDA_VISIBLE_DEVICES=0 python inference.py --data_url PATH_TO_DATASET --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 2

The dataset is expected to be prepared as follows:

ImageNet
├── train
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 1)
│   ├── ...
├── val
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 1)
│   ├── ...

Training

  • Here we take training ResNet-50 (96x96, T=5) for example. All the used initialization models and stage-1/2 checkpoints can be found in Tsinghua Cloud / Google Drive. Currently, this link includes ResNet and MobileNet-V3. We will update it as soon as possible. If you need other helps, feel free to contact us.

  • The Results in the paper is based on 2 Tesla V100 GPUs. For most of experiments, up to 4 Titan Xp GPUs may be enough.

Training stage 1, the initializations of global encoder (model_prime) and local encoder (model) are required:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --data_url PATH_TO_DATASET --train_stage 1 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --model_prime_path PATH_TO_CHECKPOINTS  --model_path PATH_TO_CHECKPOINTS

Training stage 2, a stage-1 checkpoint is required:

CUDA_VISIBLE_DEVICES=0 python train.py --data_url PATH_TO_DATASET --train_stage 2 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --checkpoint_path PATH_TO_CHECKPOINTS

Training stage 3, a stage-2 checkpoint is required:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --data_url PATH_TO_DATASET --train_stage 3 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --checkpoint_path PATH_TO_CHECKPOINTS

Contact

If you have any question, please feel free to contact the authors. Yulin Wang: [email protected].

Acknowledgment

Our code of MobileNet-V3 and EfficientNet is from here. Our code of RegNet is from here.

To Do

  • Update the code for visualizing.

  • Update the code for MIXED PRECISION TRAINING。

Owner
Rainforest Wang
Rainforest Wang
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022