Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Related tags

Deep LearningQcover
Overview
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is developed by the quantum operating system team in Beijing Academy of Quantum Information Sciences (BAQIS). Qcover supports fast output of optimal parameters in shallow QAOA circuits. It can be used as a powerful tool to assist NISQ processor to demonstrate application-level quantum advantages.

Getting started

Use the following command to complete the installation of Qcover

pip install Qcover

or

git clone https://github.com/BAQIS-Quantum/Qcover
pip install -r requirements.yml
python setup.py install

More example codes and tutorials can be found in the tests folder here on GitHub.

Examples

  1. Using algorithm core module to generate the ising random weighted graph and calculate it's Hamiltonian expectation
    from Qcover.core import Qcover
    from Qcover.backends import CircuitByQulacs
    from Qcover.optimizers import COBYLA
    
    node_num, edge_num = 6, 9
    p = 1
    nodes, edges = Qcover.generate_graph_data(node_num, edge_num)
    g = Qcover.generate_weighted_graph(nodes, edges)
    qulacs_bc = CircuitByQulacs()
    optc = COBYLA(options={'tol': 1e-3, 'disp': True})
    qc = Qcover(g, p=p, optimizer=optc, backend=qulacs_bc)
    res = qc.run()
    print("the result of problem is:\n", res)
    qc.backend.visualization()
  2. Solving specific binary combinatorial optimization problems, Calculating the expectation value of the Hamiltonian of the circuit which corresponding to the problem. for example, if you want to using Qcover to solve a max-cut problem, just coding below:
    import numpy as np
    from Qcover.core import Qcover
    from Qcover.backends import CircuitByQiskit
    from Qcover.optimizers import COBYLA
    from Qcover.applications.max_cut import MaxCut
    node_num, degree = 6, 3
    p = 1
    mxt = MaxCut(node_num=node_num, node_degree=degree)
    ising_g = mxt.run()
    qiskit_bc = CircuitByQiskit(expectation_calc_method="statevector")
    optc = COBYLA(options={'tol': 1e-3, 'disp': True})
    qc = Qcover(ising_g, p=p, optimizer=optc, backend=qiskit_bc)
    res = qc.run()
    print("the result of problem is:\n", res)
    qc.backend.visualization()
  3. If you want to customize the Ising weight graph model and calculate the ground state expectation with Qcover, you can use the following code
    import numpy as np
    import networkx as nx
    from Qcover.core import Qcover
    from Qcover.backends import CircuitByTensor
    from Qcover.optimizers import COBYLA
    
    ising_g = nx.Graph()
    nodes = [(0, 3), (1, 2), (2, 1), (3, 1)]
    edges = [(0, 1, 1), (0, 2, 1), (3, 1, 2), (2, 3, 3)]
    for nd in nodes:
       u, w = nd[0], nd[1]
       ising_g.add_node(int(u), weight=int(w))
    for ed in edges:
        u, v, w = ed[0], ed[1], ed[2]
    ising_g.add_edge(int(u), int(v), weight=int(w))
    
    p = 2
    optc = COBYLA(options={'tol': 1e-3, 'disp': True})
    ts_bc = CircuitByTensor()
    qc = Qcover(ising_g, p=p, optimizer=optc, backend=ts_bc)
    res = qc.run()
    print("the result of problem is:\n", res)
    qc.backend.visualization()

How to contribute

For information on how to contribute, please send an e-mail to members of developer of this project.

Please cite

When using Qcover for research projects, please cite

  • Wei-Feng Zhuang, Ya-Nan Pu, Hong-Ze Xu, Xudan Chai, Yanwu Gu, Yunheng Ma, Shahid Qamar, Chen Qian, Peng Qian, Xiao Xiao, Meng-Jun Hu, and Done E. Liu, "Efficient Classical Computation of Quantum Mean Value for Shallow QAOA Circuits", arXiv:2112.11151 (2021).

Authors

The first release of Qcover was developed by the quantum operating system team in Beijing Academy of Quantum Information Sciences.

Qcover is constantly growing and many other people have already contributed to it in the meantime.

License

Qcover is released under the Apache 2 license.

Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
FinEAS: Financial Embedding Analysis of Sentiment 📈

FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
a minimal terminal with python 😎😉

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022