ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

Overview

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

This repository contains the source code of our paper, ESPNet (accepted for publication in ECCV'18).

Sample results

Check our project page for more qualitative results (videos).

Click on the below sample image to view the segmentation results on YouTube.

Structure of this repository

This repository is organized as:

  • train This directory contains the source code for trainig the ESPNet-C and ESPNet models.
  • test This directory contains the source code for evaluating our model on RGB Images.
  • pretrained This directory contains the pre-trained models on the CityScape dataset
    • encoder This directory contains the pretrained ESPNet-C models
    • decoder This directory contains the pretrained ESPNet models

Performance on the CityScape dataset

Our model ESPNet achives an class-wise mIOU of 60.336 and category-wise mIOU of 82.178 on the CityScapes test dataset and runs at

  • 112 fps on the NVIDIA TitanX (30 fps faster than ENet)
  • 9 FPS on TX2
  • With the same number of parameters as ENet, our model is 2% more accurate

Performance on the CamVid dataset

Our model achieves an mIOU of 55.64 on the CamVid test set. We used the dataset splits (train/val/test) provided here. We trained the models at a resolution of 480x360. For comparison with other models, see SegNet paper.

Note: We did not use the 3.5K dataset for training which was used in the SegNet paper.

Model mIOU Class avg.
ENet 51.3 68.3
SegNet 55.6 65.2
ESPNet 55.64 68.30

Pre-requisite

To run this code, you need to have following libraries:

  • OpenCV - We tested our code with version > 3.0.
  • PyTorch - We tested with v0.3.0
  • Python - We tested our code with Pythonv3. If you are using Python v2, please feel free to make necessary changes to the code.

We recommend to use Anaconda. We have tested our code on Ubuntu 16.04.

Citation

If ESPNet is useful for your research, then please cite our paper.

@inproceedings{mehta2018espnet,
  title={ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation},
  author={Sachin Mehta, Mohammad Rastegari, Anat Caspi, Linda Shapiro, and Hannaneh Hajishirzi},
  booktitle={ECCV},
  year={2018}
}

FAQs

Assertion error with class labels (t >= 0 && t < n_classes).

If you are getting an assertion error with class labels, then please check the number of class labels defined in the label images. You can do this as:

import cv2
import numpy as np
labelImg = cv2.imread(<label_filename.png>, 0)
unique_val_arr = np.unique(labelImg)
print(unique_val_arr)

The values inside unique_val_arr should be between 0 and total number of classes in the dataset. If this is not the case, then pre-process your label images. For example, if the label iamge contains 255 as a value, then you can ignore these values by mapping it to an undefined or background class as:

labelImg[labelImg == 255] = <undefined class id>
Owner
Sachin Mehta
Research Scientist at Apple and Affiliate Assistant Professor at UW
Sachin Mehta
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023