3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

Overview

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

arXiv

Introduction

This repository contains the code and models for the following paper.

Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks
Cheng Yu, Bo Wang, Bo Yang, Robby T. Tan
Computer Vision and Pattern Recognition, CVPR 2021.

Overview of the proposed method:

Updates

  • 06/18/2021 evaluation code of PCK (person-centric) and PCK_abs (camera-centric), and pre-trained model for MuPoTS dataset tested and released

Installation

Dependencies

Pytorch >= 1.5
Python >= 3.6

Create an enviroment.

conda create -n 3dmpp python=3.6
conda activate 3dmpp

Install the latest version of pytorch (tested on pytorch 1.5 - 1.7) based on your OS and GPU driver installed following install pytorch. For example, command to use on Linux with CUDA 11.0 is like:

conda install pytorch torchvision cudatoolkit=11.0 -c pytorch

Install dependencies

pip install - r requirements.txt

Build the Fast Gaussian Map tool:

cd lib/fastgaus
python setup.py build_ext --inplace
cd ../..

Models and Testing Data

Pre-trained Models

Download the pre-trained model and processed human keypoint files here, and unzip the downloaded zip file to this project's root directory, two folders are expected to see after doing that (i.e., ./ckpts and ./mupots).

MuPoTS Dataset

MuPoTS eval set is needed to perform evaluation as the results reported in Table 3 in the main paper, which is available on the MuPoTS dataset website. You need to download the mupots-3d-eval.zip file, unzip it, and run get_mupots-3d.sh to download the dataset. After the download is complete, a MultiPersonTestSet.zip is avaiable, ~5.6 GB. Unzip it and move the folder MultiPersonTestSet to the root directory of the project to perform evaluation on MuPoTS test set. Now you should see the following directory structure.

${3D-Multi-Person-Pose_ROOT}
|-- ckpts              <-- the downloaded pre-trained Models
|-- lib
|-- MultiPersonTestSet <-- the newly added MuPoTS eval set
|-- mupots             <-- the downloaded processed human keypoint files
|-- util
|-- 3DMPP_framework.png
|-- calculate_mupots_btmup.py
|-- other python code, LICENSE, and README files
...

Usage

MuPoTS dataset evaluation

3D Multi-Person Pose Estimation Evaluation on MuPoTS Dataset

The following table is similar to Table 3 in the main paper, where the quantitative evaluations on MuPoTS-3D dataset are provided (best performance in bold). Evaluation instructions to reproduce the results (PCK and PCK_abs) are provided in the next section.

Group Methods PCK PCK_abs
Person-centric (relative 3D pose) Mehta et al., 3DV'18 65.0 N/A
Person-centric (relative 3D pose) Rogez et al., IEEE TPAMI'19 70.6 N/A
Person-centric (relative 3D pose) Mehta et al., ACM TOG'20 70.4 N/A
Person-centric (relative 3D pose) Cheng et al., ICCV'19 74.6 N/A
Person-centric (relative 3D pose) Cheng et al., AAAI'20 80.5 N/A
Camera-centric (absolute 3D pose) Moon et al., ICCV'19 82.5 31.8
Camera-centric (absolute 3D pose) Lin et al., ECCV'20 83.7 35.2
Camera-centric (absolute 3D pose) Zhen et al., ECCV'20 80.5 38.7
Camera-centric (absolute 3D pose) Li et al., ECCV'20 82.0 43.8
Camera-centric (absolute 3D pose) Cheng et al., AAAI'21 87.5 45.7
Camera-centric (absolute 3D pose) Our method 89.6 48.0

Run evaluation on MuPoTS dataset with estimated 2D joints as input

We split the whole pipeline into several separate steps to make it more clear for the users.

python calculate_mupots_topdown_pts.py
python calculate_mupots_topdown_depth.py
python calculate_mupots_btmup.py
python calculate_mupots_integrate.py

Please note that python calculate_mupots_btmup.py is going to take a while (30-40 minutes depending on your machine).

To evaluate the person-centric 3D multi-person pose estimation:

python eval_mupots_pck.py

After running the above code, the following PCK (person-centric, pelvis-based origin) value is expected, which matches the number reported in Table 3, PCK = 89 (percentage) in the paper.

...
Seq: 18
Seq: 19
Seq: 20
PCK_MEAN: 0.8994453169938017

To evaluate camera-centric (i.e., camera coordinates) 3D multi-person pose estimation:

python eval_mupots_pck_abs.py

After running the above code, the following PCK_abs (camera-centric) value is expected, which matches the number reported in Table 3, PCK_abs = 48 (percentage) in the paper.

...
Seq: 18
Seq: 19
Seq: 20
PCK_MEAN: 0.48514110933606175

License

The code is released under the MIT license. See LICENSE for details.

Citation

If this work is useful for your research, please cite our paper.

@InProceedings{Cheng_2021_CVPR,
    author    = {Cheng, Yu and Wang, Bo and Yang, Bo and Tan, Robby T.},
    title     = {Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {7649-7659}
}
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022