3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

Overview

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

arXiv

Introduction

This repository contains the code and models for the following paper.

Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks
Cheng Yu, Bo Wang, Bo Yang, Robby T. Tan
Computer Vision and Pattern Recognition, CVPR 2021.

Overview of the proposed method:

Updates

  • 06/18/2021 evaluation code of PCK (person-centric) and PCK_abs (camera-centric), and pre-trained model for MuPoTS dataset tested and released

Installation

Dependencies

Pytorch >= 1.5
Python >= 3.6

Create an enviroment.

conda create -n 3dmpp python=3.6
conda activate 3dmpp

Install the latest version of pytorch (tested on pytorch 1.5 - 1.7) based on your OS and GPU driver installed following install pytorch. For example, command to use on Linux with CUDA 11.0 is like:

conda install pytorch torchvision cudatoolkit=11.0 -c pytorch

Install dependencies

pip install - r requirements.txt

Build the Fast Gaussian Map tool:

cd lib/fastgaus
python setup.py build_ext --inplace
cd ../..

Models and Testing Data

Pre-trained Models

Download the pre-trained model and processed human keypoint files here, and unzip the downloaded zip file to this project's root directory, two folders are expected to see after doing that (i.e., ./ckpts and ./mupots).

MuPoTS Dataset

MuPoTS eval set is needed to perform evaluation as the results reported in Table 3 in the main paper, which is available on the MuPoTS dataset website. You need to download the mupots-3d-eval.zip file, unzip it, and run get_mupots-3d.sh to download the dataset. After the download is complete, a MultiPersonTestSet.zip is avaiable, ~5.6 GB. Unzip it and move the folder MultiPersonTestSet to the root directory of the project to perform evaluation on MuPoTS test set. Now you should see the following directory structure.

${3D-Multi-Person-Pose_ROOT}
|-- ckpts              <-- the downloaded pre-trained Models
|-- lib
|-- MultiPersonTestSet <-- the newly added MuPoTS eval set
|-- mupots             <-- the downloaded processed human keypoint files
|-- util
|-- 3DMPP_framework.png
|-- calculate_mupots_btmup.py
|-- other python code, LICENSE, and README files
...

Usage

MuPoTS dataset evaluation

3D Multi-Person Pose Estimation Evaluation on MuPoTS Dataset

The following table is similar to Table 3 in the main paper, where the quantitative evaluations on MuPoTS-3D dataset are provided (best performance in bold). Evaluation instructions to reproduce the results (PCK and PCK_abs) are provided in the next section.

Group Methods PCK PCK_abs
Person-centric (relative 3D pose) Mehta et al., 3DV'18 65.0 N/A
Person-centric (relative 3D pose) Rogez et al., IEEE TPAMI'19 70.6 N/A
Person-centric (relative 3D pose) Mehta et al., ACM TOG'20 70.4 N/A
Person-centric (relative 3D pose) Cheng et al., ICCV'19 74.6 N/A
Person-centric (relative 3D pose) Cheng et al., AAAI'20 80.5 N/A
Camera-centric (absolute 3D pose) Moon et al., ICCV'19 82.5 31.8
Camera-centric (absolute 3D pose) Lin et al., ECCV'20 83.7 35.2
Camera-centric (absolute 3D pose) Zhen et al., ECCV'20 80.5 38.7
Camera-centric (absolute 3D pose) Li et al., ECCV'20 82.0 43.8
Camera-centric (absolute 3D pose) Cheng et al., AAAI'21 87.5 45.7
Camera-centric (absolute 3D pose) Our method 89.6 48.0

Run evaluation on MuPoTS dataset with estimated 2D joints as input

We split the whole pipeline into several separate steps to make it more clear for the users.

python calculate_mupots_topdown_pts.py
python calculate_mupots_topdown_depth.py
python calculate_mupots_btmup.py
python calculate_mupots_integrate.py

Please note that python calculate_mupots_btmup.py is going to take a while (30-40 minutes depending on your machine).

To evaluate the person-centric 3D multi-person pose estimation:

python eval_mupots_pck.py

After running the above code, the following PCK (person-centric, pelvis-based origin) value is expected, which matches the number reported in Table 3, PCK = 89 (percentage) in the paper.

...
Seq: 18
Seq: 19
Seq: 20
PCK_MEAN: 0.8994453169938017

To evaluate camera-centric (i.e., camera coordinates) 3D multi-person pose estimation:

python eval_mupots_pck_abs.py

After running the above code, the following PCK_abs (camera-centric) value is expected, which matches the number reported in Table 3, PCK_abs = 48 (percentage) in the paper.

...
Seq: 18
Seq: 19
Seq: 20
PCK_MEAN: 0.48514110933606175

License

The code is released under the MIT license. See LICENSE for details.

Citation

If this work is useful for your research, please cite our paper.

@InProceedings{Cheng_2021_CVPR,
    author    = {Cheng, Yu and Wang, Bo and Yang, Bo and Tan, Robby T.},
    title     = {Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {7649-7659}
}
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

cv516Buaa 9 Nov 07, 2022