Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Overview

Pattern Recognition and Machine Learning (PRML)

MDN

nbviewer

This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Pattern Recognition and Machine Learning book, as well as replicas for many of the graphs presented in the book.

Discussions (new)

If you have any questions and/or requests, check out the discussions page!

Useful Links

Content

.
├── README.md
├── chapter01
│   ├── einsum.ipynb
│   ├── exercises.ipynb
│   └── introduction.ipynb
├── chapter02
│   ├── Exercises.ipynb
│   ├── bayes-binomial.ipynb
│   ├── bayes-normal.ipynb
│   ├── density-estimation.ipynb
│   ├── exponential-family.ipynb
│   ├── gamma-distribution.ipynb
│   ├── mixtures-of-gaussians.ipynb
│   ├── periodic-variables.ipynb
│   ├── robbins-monro.ipynb
│   └── students-t-distribution.ipynb
├── chapter03
│   ├── bayesian-linear-regression.ipynb
│   ├── equivalent-kernel.ipynb
│   ├── evidence-approximation.ipynb
│   ├── linear-models-for-regression.ipynb
│   ├── ml-vs-map.ipynb
│   ├── predictive-distribution.ipynb
│   └── sequential-bayesian-learning.ipynb
├── chapter04
│   ├── exercises.ipynb
│   ├── fisher-linear-discriminant.ipynb
│   ├── least-squares-classification.ipynb
│   ├── logistic-regression.ipynb
│   └── perceptron.ipynb
├── chapter05
│   ├── backpropagation.ipynb
│   ├── bayesian-neural-networks.ipynb
│   ├── ellipses.ipynb
│   ├── imgs
│   │   └── f51.png
│   ├── mixture-density-networks.ipynb
│   ├── soft-weight-sharing.ipynb
│   └── weight-space-symmetry.ipynb
├── chapter06
│   ├── gaussian-processes.ipynb
│   └── kernel-regression.ipynb
├── chapter07
│   ├── relevance-vector-machines.ipynb
│   └── support-vector-machines.ipynb
├── chapter08
│   ├── exercises.ipynb
│   ├── graphical-model-inference.ipynb
│   ├── img.jpeg
│   ├── markov-random-fields.ipynb
│   ├── sum-product.ipynb
│   └── trees.ipynb
├── chapter09
│   ├── gaussian-mixture-models.ipynb
│   ├── k-means.ipynb
│   └── mixture-of-bernoulli.ipynb
├── chapter10
│   ├── exponential-mixture-gaussians.ipynb
│   ├── local-variational-methods.ipynb
│   ├── mixture-gaussians.ipynb
│   ├── variational-logistic-regression.ipynb
│   └── variational-univariate-gaussian.ipynb
├── chapter11
│   ├── adaptive-rejection-sampling.ipynb
│   ├── gibbs-sampling.ipynb
│   ├── hybrid-montecarlo.ipynb
│   ├── markov-chain-motecarlo.ipynb
│   ├── rejection-sampling.ipynb
│   ├── slice-sampling.ipynb
│   └── transformation-random-variables.ipynb
├── chapter12
│   ├── bayesian-pca.ipynb
│   ├── kernel-pca.ipynb
│   ├── ppca.py
│   ├── principal-component-analysis.ipynb
│   └── probabilistic-pca.ipynb
├── chapter13
│   ├── em-hidden-markov-model.ipynb
│   ├── hidden-markov-model.ipynb
│   └── linear-dynamical-system.ipynb
├── chapter14
│   ├── CART.ipynb
│   ├── boosting.ipynb
│   ├── cmm-linear-regression.ipynb
│   ├── cmm-logistic-regression.ipynb
│   └── tree.py
└── misc
    └── tikz
        ├── ch13-hmm.tex
        └── ch8-sum-product.tex

17 directories, 73 files
Owner
Gerardo Durán-Martín
PhD student in Bayesian methods and Machine Learning at Queen Mary University
Gerardo Durán-Martín
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022