Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Overview

Pattern Recognition and Machine Learning (PRML)

MDN

nbviewer

This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Pattern Recognition and Machine Learning book, as well as replicas for many of the graphs presented in the book.

Discussions (new)

If you have any questions and/or requests, check out the discussions page!

Useful Links

Content

.
├── README.md
├── chapter01
│   ├── einsum.ipynb
│   ├── exercises.ipynb
│   └── introduction.ipynb
├── chapter02
│   ├── Exercises.ipynb
│   ├── bayes-binomial.ipynb
│   ├── bayes-normal.ipynb
│   ├── density-estimation.ipynb
│   ├── exponential-family.ipynb
│   ├── gamma-distribution.ipynb
│   ├── mixtures-of-gaussians.ipynb
│   ├── periodic-variables.ipynb
│   ├── robbins-monro.ipynb
│   └── students-t-distribution.ipynb
├── chapter03
│   ├── bayesian-linear-regression.ipynb
│   ├── equivalent-kernel.ipynb
│   ├── evidence-approximation.ipynb
│   ├── linear-models-for-regression.ipynb
│   ├── ml-vs-map.ipynb
│   ├── predictive-distribution.ipynb
│   └── sequential-bayesian-learning.ipynb
├── chapter04
│   ├── exercises.ipynb
│   ├── fisher-linear-discriminant.ipynb
│   ├── least-squares-classification.ipynb
│   ├── logistic-regression.ipynb
│   └── perceptron.ipynb
├── chapter05
│   ├── backpropagation.ipynb
│   ├── bayesian-neural-networks.ipynb
│   ├── ellipses.ipynb
│   ├── imgs
│   │   └── f51.png
│   ├── mixture-density-networks.ipynb
│   ├── soft-weight-sharing.ipynb
│   └── weight-space-symmetry.ipynb
├── chapter06
│   ├── gaussian-processes.ipynb
│   └── kernel-regression.ipynb
├── chapter07
│   ├── relevance-vector-machines.ipynb
│   └── support-vector-machines.ipynb
├── chapter08
│   ├── exercises.ipynb
│   ├── graphical-model-inference.ipynb
│   ├── img.jpeg
│   ├── markov-random-fields.ipynb
│   ├── sum-product.ipynb
│   └── trees.ipynb
├── chapter09
│   ├── gaussian-mixture-models.ipynb
│   ├── k-means.ipynb
│   └── mixture-of-bernoulli.ipynb
├── chapter10
│   ├── exponential-mixture-gaussians.ipynb
│   ├── local-variational-methods.ipynb
│   ├── mixture-gaussians.ipynb
│   ├── variational-logistic-regression.ipynb
│   └── variational-univariate-gaussian.ipynb
├── chapter11
│   ├── adaptive-rejection-sampling.ipynb
│   ├── gibbs-sampling.ipynb
│   ├── hybrid-montecarlo.ipynb
│   ├── markov-chain-motecarlo.ipynb
│   ├── rejection-sampling.ipynb
│   ├── slice-sampling.ipynb
│   └── transformation-random-variables.ipynb
├── chapter12
│   ├── bayesian-pca.ipynb
│   ├── kernel-pca.ipynb
│   ├── ppca.py
│   ├── principal-component-analysis.ipynb
│   └── probabilistic-pca.ipynb
├── chapter13
│   ├── em-hidden-markov-model.ipynb
│   ├── hidden-markov-model.ipynb
│   └── linear-dynamical-system.ipynb
├── chapter14
│   ├── CART.ipynb
│   ├── boosting.ipynb
│   ├── cmm-linear-regression.ipynb
│   ├── cmm-logistic-regression.ipynb
│   └── tree.py
└── misc
    └── tikz
        ├── ch13-hmm.tex
        └── ch8-sum-product.tex

17 directories, 73 files
Owner
Gerardo Durán-Martín
PhD student in Bayesian methods and Machine Learning at Queen Mary University
Gerardo Durán-Martín
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
sktime companion package for deep learning based on TensorFlow

NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and

sktime 573 Jan 05, 2023
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022