Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Overview

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Task

Training huge unsupervised deep neural networks yields to strong progress in the field of Natural Language Processing (NLP). Using these extensively pre-trained networks for particular NLP applications is the current state-of-the-art approach. In this project, we approach the task of ranking possible clarifying questions for a given query. We fine-tuned a pre-trained BERT model to rank the possible clarifying questions in a classification manner. The achieved model scores a top-5 accuracy of 0.4565 on the provided benchmark dataset.

Installation

This project was originally developed with Python 3.8, PyTorch 1.7, and CUDA 11.0. The training requires one NVIDIA GeForce RTX 1080 (11GB memory).

  • Create conda environment:
conda create --name dl4nlp
source activate dl4nlp
  • Install the dependencies:
pip install -r requirements.txt

Run

We use a pretrained BERT-Base by Hugging Face and fine-tune it on the given training dataset. To run training, please use the following command:

python main.py --train

For evaluation on the test set, please use the following command:

python main.py --test

Arguments for training and/or testing:

  • --train: Run training on training dataset. Default: True
  • --val: Run evaluation during training on validation dataset. Default: True
  • --test: Run evaluation on test dataset. Default: True
  • --cuda-devices: Set GPU index Default: 0
  • --cpu: Run everything on CPU. Default: False
  • --data-parallel: Use DataParallel. Default: False
  • --data-root: Path to dataset folder. Default: data
  • --train-file-name: Name of training file name in data-root. Default: training.tsv
  • --test-file-name: Name of test file name in data-root. Default: test_set.tsv
  • --question-bank-name: Name of question bank file name in data-root. Default: question_bank.tsv
  • --checkpoints-root: Path to checkpoints folder. Default: checkpoints
  • --checkpoint-name: File name of checkpoint in checkpoints-root to start training or use for testing. Default: None
  • --runs-root: Path to output runs folder for tensorboard. Default: runs
  • --txt-root: Path to output txt folder for evaluation results. Default: txt
  • --lr: Learning rate. Default: 1e-5
  • --betas: Betas for optimization. Default: (0.9, 0.999)
  • --weight-decay: Weight decay. Default: 1e-2
  • --val-start: Set at which epoch to start validation. Default: 0
  • --val-step: Set at which epoch rate to valide. Default: 1
  • --val-split: Use subset of training dataset for validation. Default: 0.005
  • --num-epochs: Number of epochs for training. Default: 10
  • --batch-size: Samples per batch. Default: 32
  • --num-workers: Number of workers. Default: 4
  • --top-k-accuracy: Evaluation metric with flexible top-k-accuracy. Default: 50
  • --true-label: True label in dataset. Default: 1
  • --false-label: False label in dataset. Default: 0

Example output

User query:

Tell me about Computers

Propagated clarifying questions:

  1. do you like using computers
  2. do you want to know how to do computer programming
  3. do you want to see some closeup of a turbine
  4. are you looking for information on different computer programming languages
  5. are you referring to a software
Owner
Oliver Hahn
Master Thesis @ Visual Inference Lab | Grad Student @ Technical University of Darmstadt
Oliver Hahn
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

19 Oct 11, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?

EPFL Machine Learning and Optimization Laboratory 9 Oct 25, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023