ShapeGlot: Learning Language for Shape Differentiation

Overview

ShapeGlot: Learning Language for Shape Differentiation

Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas.

representative

Introduction

This work is based on our ICCV-2019 paper. There, we proposed speaker & listener neural models that reason and differentiate objects according to their shape via language (hence the term shape--glot). These models can operate on 2D images and/or 3D point-clouds and do learn about natural properties of shapes, including the part-based compositionality of 3D objects, from language alone. The latter fact, makes them remarkably robust, enabling a plethora of zero-shot-transfer learning applications. You can check our project's webpage for a quick introduction and produced results.

Dependencies

Main Requirements:

Our code has been tested with Python 3.6.9, Pytorch 1.3.1, CUDA 10.0 on Ubuntu 14.04.

Installation

Clone the source code of this repository and pip install it inside your (virtual) environment.

git clone https://github.com/optas/shapeglot
cd shapeglot
pip install -e .

Data Set

We provide 78,782 utterances referring to a ShapeNet chair that was contrasted against two distractor chairs via the reference game described in our accompanying paper (dataset termed as ChairsInContext). We further provide the data used in the Zero-Shot experiments which include 300 images of real-world chairs, and 1200 referential utterances for ShapeNet lamps & tables & sofas, and 400 utterances describing ModelNet beds. Last, we include image-based (VGG-16) and point-cloud-based (PC-AE) pretrained features for all ShapeNet chairs to facilitate the training of the neural speakers and listeners.

To download the data (~232 MB) please run the following commands. Notice, that you first need to accept the Terms Of Use here. Upon review we will email to you the necessary link that you need to put inside the desingated location of the download_data.sh file.

cd shapeglot/
./download_data.sh

The downloaded data will be stored in shapeglot/data

Usage

To easily expose the main functionalities of our paper, we prepared some simple, instructional notebooks.

  1. To tokenize, prepare and visualize the chairsInContext dataset, please look/run:
    shapeglot/notebooks/prepare_chairs_in_context_data.ipynb
  1. To train a neural listener (only ~10 minutes on a single modern GPU):
    shapeglot/notebooks/train_listener.ipynb

Note: This repo contains limited functionality compared to what was presented in the paper. This is because our original (much heavier) implementation is in low-level TensorFlow and python 2.7. If you need more functionality (e.g. pragmatic-speakers) and you are OK with Tensorflow, please email [email protected] .

Citation

If you find our work useful in your research, please consider citing:

@article{shapeglot,
  title={ShapeGlot: Learning Language for Shape Differentiation},
  author={Achlioptas, Panos and Fan, Judy and Hawkins, Robert X. D. and Goodman, Noah D. and Guibas, Leonidas J.},
  journal={CoRR},
  volume={abs/1905.02925},
  year={2019}
}

License

This provided code is licensed under the terms of the MIT license (see LICENSE for details).

Owner
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
NanoDet-Plus⚔Super fast and lightweight anchor-free object detection model. šŸ”„Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphonešŸ”„

NanoDet-Plus⚔Super fast and lightweight anchor-free object detection model. šŸ”„Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphonešŸ”„

4.8k Jan 07, 2023
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Springer Link Download Module for Python

ā™ž pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Code for our EMNLP 2021 paper ā€œHeterogeneous Graph Neural Networks for Keyphrase Generationā€

GATER This repository contains the code for our EMNLP 2021 paper ā€œHeterogeneous Graph Neural Networks for Keyphrase Generationā€. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022