A toolkit for Lagrangian-based constrained optimization in Pytorch

Overview

Cooper

LICENSE DOCS Build and Test Codecov

About

Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of constrained optimization problems in machine learning.

Cooper is (almost!) seamlessly integrated with Pytorch and preserves the usual loss -> backward -> step workflow. If you are already familiar with Pytorch, using Cooper will be a breeze! 🙂

Cooper was born out of the need to handle constrained optimization problems for which the loss or constraints are not necessarily "nicely behaved" or "theoretically tractable", e.g. when no (efficient) projection or proximal are available. Although assumptions of this kind have enabled the development of great Pytorch-based libraries such as CHOP and GeoTorch, they are seldom satisfied in the context of many modern machine learning problems.

Many of the structural design ideas behind Cooper are heavily inspired by the TensorFlow Constrained Optimization (TFCO) library. We highly recommend TFCO for TensorFlow-based projects and will continue to integrate more of TFCO's features in future releases.

⚠️ This library is under active development. Future API changes might break backward compatibility. ⚠️

Getting Started

Here we consider a simple convex optimization problem to illustrate how to use Cooper. This example is inspired by this StackExchange question:

I am trying to solve the following problem using Pytorch: given a 6-sided die whose average roll is known to be 4.5, what is the maximum entropy distribution for the faces?

import torch
import cooper

class MaximumEntropy(cooper.ConstrainedMinimizationProblem):
    def __init__(self, mean_constraint):
        self.mean_constraint = mean_constraint
        super().__init__(is_constrained=True)

    def closure(self, probs):
        # Verify domain of definition of the functions
        assert torch.all(probs >= 0)

        # Negative signed removed since we want to *maximize* the entropy
        entropy = torch.sum(probs * torch.log(probs))

        # Entries of p >= 0 (equiv. -p <= 0)
        ineq_defect = -probs

        # Equality constraints for proper normalization and mean constraint
        mean = torch.sum(torch.tensor(range(1, len(probs) + 1)) * probs)
        eq_defect = torch.stack([torch.sum(probs) - 1, mean - self.mean_constraint])

        return cooper.CMPState(loss=entropy, eq_defect=eq_defect, ineq_defect=ineq_defect)

# Define the problem and formulation
cmp = MaximumEntropy(mean_constraint=4.5)
formulation = cooper.LagrangianFormulation(cmp)

# Define the primal parameters and optimizer
probs = torch.nn.Parameter(torch.rand(6)) # Use a 6-sided die
primal_optimizer = cooper.optim.ExtraSGD([probs], lr=3e-2, momentum=0.7)

# Define the dual optimizer. Note that this optimizer has NOT been fully instantiated
# yet. Cooper takes care of this, once it has initialized the formulation state.
dual_optimizer = cooper.optim.partial_optimizer(cooper.optim.ExtraSGD, lr=9e-3, momentum=0.7)

# Wrap the formulation and both optimizers inside a ConstrainedOptimizer
coop = cooper.ConstrainedOptimizer(formulation, primal_optimizer, dual_optimizer)

# Here is the actual training loop.
# The steps follow closely the `loss -> backward -> step` Pytorch workflow.
for iter_num in range(5000):
    coop.zero_grad()
    lagrangian = formulation.composite_objective(cmp.closure, probs)
    formulation.custom_backward(lagrangian)
    coop.step(cmp.closure, probs)

Installation

Basic Installation

pip install git+https://github.com/cooper-org/cooper.git

Development Installation

First, clone the repository, navigate to the Cooper root directory and install the package in development mode by running:

Setting Command Notes
Development pip install --editable ".[dev, tests]" Editable mode. Matches test environment.
Docs pip install --editable ".[docs]" Used to re-generate the documentation.
Tutorials pip install --editable ".[examples]" Install dependencies for running examples
No Tests pip install --editable . Editable mode, without tests.

Package structure

  • cooper - base package
    • problem - abstract class for representing ConstrainedMinimizationProblems (CMPs)
    • constrained_optimizer - torch.optim.Optimizer-like class for handling CMPs
    • lagrangian_formulation - Lagrangian formulation of a CMP
    • multipliers - utility class for Lagrange multipliers
    • optim - aliases for Pytorch optimizers and extra-gradient versions of SGD and Adam
  • tests - unit tests for cooper components
  • tutorials - source code for examples contained in the tutorial gallery

Contributions

Please read our CONTRIBUTING guide prior to submitting a pull request. We use black for formatting, isort for import sorting, flake8 for linting, and mypy for type checking.

We test all pull requests. We rely on this for reviews, so please make sure any new code is tested. Tests for cooper go in the tests folder in the root of the repository.

License

Cooper is distributed under an MIT license, as found in the LICENSE file.

Acknowledgements

Cooper supports the use of extra-gradient style optimizers for solving the min-max Lagrangian problem. We include the implementations of the extra-gradient version of SGD and Adam by Hugo Berard.

We thank Manuel del Verme for insightful discussions during the early stages of this library.

This README follows closely the style of the NeuralCompression repository.

How to cite this work?

If you find Cooper useful in your research, please consider citing it using the snippet below:

@misc{gallegoPosada2022cooper,
    author={Gallego-Posada, Jose and Ramirez, Juan},
    title={Cooper: a toolkit for Lagrangian-based constrained optimization},
    howpublished={\url{https://github.com/cooper-org/cooper}},
    year={2022}
}
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
Woosung Choi 63 Nov 14, 2022
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023