[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

Related tags

Deep LearningCaaM
Overview

CaaM

This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, which will be further refined and checked recently.

0. Bibtex

If you find our codes helpful, please cite our paper:

@inproceedings{wang2021causal,
  title={Causal Attention for Unbiased Visual Recognition},
  author={Wang, Tan and Zhou, Chang and Sun, Qianru and Zhang, Hanwang},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

1. Preparation

  1. Installation: Python3.6, Pytorch1.6, tensorboard, timm(0.3.4), scikit-learn, opencv-python, matplotlib, yaml
  2. Dataset:
  1. Please remember to change the data path in the config file.

2. Evaluation:

  1. For ResNet18 on NICO dataset
CUDA_VISIBLE_DEVICES=0 python train.py -cfg conf/ours_resnet18_multilayer2_bf0.02_noenv_pw5e5.yaml -debug -gpu -eval pretrain_model/nico_resnet18_ours_caam-best.pth

The results will be: Val Score: 0.4638461470603943 Test Score: 0.4661538600921631

  1. For T2T-ViT7 on NICO dataset
CUDA_VISIBLE_DEVICES=0,1 python train.py -cfg conf/ours_t2tvit7_bf0.02_s4_noenv_pw5e4.yaml -debug -gpu -multigpu -eval pretrain_model/nico_t2tvit7_ours_caam-best.pth

The results will be: Val Score: 0.3799999952316284 Test Score: 0.3761538565158844

  1. For ImageNet-9 dataset

Similarly, the pretrained model is in pretrain_model. Please note that on ImageNet9, we report the best performance for the 3 metrics in our paper. The pretrained model is for bias and unbias and we did not save the model for the best ImageNet-A.

3. Train

To perform training, please run the sh file in scripts. For example:

sh scripts/run_baseline_resnet18.sh

4. An interesting finding

Recently I found an interesting thing by accident. The mixup added on the baseline model would not bring much performance improvements (see Table 1. in the main paper). However, when performing mixup based on our CaaM, the performance can be further boosted.

Specifically, you can active the mixup by:

sh scripts/run_ours_resnet18_mixup.sh

This can make our CaaM achieve about 50~51% Val & Test accuracy on NICO dataset.

Acknowledgement

Special thanks to the authors of ReBias and IRM, and the datasets used in this research project.

If you have any question or find any bug, please kindly email me.

Owner
Wang Tan
Ph.D. student of MreaL Lab, NTU
Wang Tan
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022