[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

Related tags

Deep LearningCaaM
Overview

CaaM

This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, which will be further refined and checked recently.

0. Bibtex

If you find our codes helpful, please cite our paper:

@inproceedings{wang2021causal,
  title={Causal Attention for Unbiased Visual Recognition},
  author={Wang, Tan and Zhou, Chang and Sun, Qianru and Zhang, Hanwang},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

1. Preparation

  1. Installation: Python3.6, Pytorch1.6, tensorboard, timm(0.3.4), scikit-learn, opencv-python, matplotlib, yaml
  2. Dataset:
  1. Please remember to change the data path in the config file.

2. Evaluation:

  1. For ResNet18 on NICO dataset
CUDA_VISIBLE_DEVICES=0 python train.py -cfg conf/ours_resnet18_multilayer2_bf0.02_noenv_pw5e5.yaml -debug -gpu -eval pretrain_model/nico_resnet18_ours_caam-best.pth

The results will be: Val Score: 0.4638461470603943 Test Score: 0.4661538600921631

  1. For T2T-ViT7 on NICO dataset
CUDA_VISIBLE_DEVICES=0,1 python train.py -cfg conf/ours_t2tvit7_bf0.02_s4_noenv_pw5e4.yaml -debug -gpu -multigpu -eval pretrain_model/nico_t2tvit7_ours_caam-best.pth

The results will be: Val Score: 0.3799999952316284 Test Score: 0.3761538565158844

  1. For ImageNet-9 dataset

Similarly, the pretrained model is in pretrain_model. Please note that on ImageNet9, we report the best performance for the 3 metrics in our paper. The pretrained model is for bias and unbias and we did not save the model for the best ImageNet-A.

3. Train

To perform training, please run the sh file in scripts. For example:

sh scripts/run_baseline_resnet18.sh

4. An interesting finding

Recently I found an interesting thing by accident. The mixup added on the baseline model would not bring much performance improvements (see Table 1. in the main paper). However, when performing mixup based on our CaaM, the performance can be further boosted.

Specifically, you can active the mixup by:

sh scripts/run_ours_resnet18_mixup.sh

This can make our CaaM achieve about 50~51% Val & Test accuracy on NICO dataset.

Acknowledgement

Special thanks to the authors of ReBias and IRM, and the datasets used in this research project.

If you have any question or find any bug, please kindly email me.

Owner
Wang Tan
Ph.D. student of MreaL Lab, NTU
Wang Tan
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
DETReg: Unsupervised Pretraining with Region Priors for Object Detection

DETReg: Unsupervised Pretraining with Region Priors for Object Detection Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik

Amir Bar 283 Dec 27, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023