Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

Overview

GSL - Zero-shot Synthesis with Group-Supervised Learning

image Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD, and Fonts). Bottom: training images (attributes are known). Top: Test image (attributes are a query).

Zero-shot Synthesis with Group-Supervised Learning
Yunhao Ge, Sami Abu-El-Haija, Gan Xin, Laurent Itti
International Conference on Learning Representations (ICLR), 2021

[Paper] [Project Page] [Fonts dataset]

To aid neural networks to envision objects with different attributes, we propose a family of objective functions, expressed on groups of examples, as a novel learning framework that we term Group-Supervised Learning (GSL). GSL allows us to decompose inputs into a disentangled representation with swappable components, that can be recombined to synthesize new samples. (i.e., images of red boats & blue cars can be decomposed and recombined to synthesize novel images of red cars.

[We are actively updating the code]

Getting Started

Installation

  • Dependencies
python 3.6.4
pytorch 0.3.1.post2
visdom
tqdm

  • Clone this repo:
git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
cd pytorch-CycleGAN-and-pix2pix

Datasets

  • iLab-20M, is an attributed dataset containing images of toy vehicles placed on a turntable using 11 cameras at different viewing points. There are 3 attribute classes: vehicle identity: 15 categories, each having 25-160 instances; pose; and backgrounds: over 14 for each identity: projecting vehicles in relevant contexts. You can download a subset of iLab-20M that we used in our paper here: iLab-6pose [http://ilab.usc.edu/datasets/iLab_6pose.zip]

  • Fonts, is a computer-generated RGB image datasets. Each image, with 128 * 128 pixels, contains an alphabet letter rendered using 5 independent generating attributes: letter identity, size, font color, background color and font. you can download the fonts dataset at here: Fonts [http://ilab.usc.edu/datasets/fonts].

  • RaFD contains pictures of 67 models displaying 8 emotional expressions taken by 5 different camera angles simultaneously. There are 3 attributes: identity, camera position (pose), and expression. To download the RaFD dataset, you must request access to the dataset from the Radboud Faces Database website.

  • dSprites, is a dataset of 2D shapes procedurally generated from 6 ground truth independent latent factors. These factors are color, shape, scale, rotation, x and y positions of a sprite. you can download the dSprites dataset here dSprites

Datasets Preprocess

To efficiently access the dataset in a manner of Group-Supervised Learning, some dataset need preprocess.

  • For iLab-20M dataset, after downloading iLab-6pose subset, please run python3 ./utils/ilab_data_preprocess.py
  • For RaFD dataset, after downloading, please run python3 ./utils/rafd_data_preprocess.py
  • For desprites dataset, after downloading, please run python3 ./utils/desprites_data_preprocess.py
  • For Fonts dataset, no preprocess needed.

After preprocess, please update the dataset path in '--dataset_path' parameter

Synthesis with pretrained model

You can download the pretrained models of ilab-20M, Fonts, RaFD and dsprites here pretrained models (http://ilab.usc.edu/datasets/GSL_pretrained_models.zip) and put them to ./checkpoints/pretrained_models The sample test images are in the ./checkpoints/test_imgs You can use the following sample commands to synthesize zero-shot images with our pretrained models:

  • For Fonts
python3 main.py --train False --dataset Fonts --pretrain_model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --test_img_path './checkpoints/test_imgs/fonts' --viz_name fonts
  • For iLab-20M
python3 main.py --train False --dataset ilab-20M --pretrain_model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --test_img_path './checkpoints/test_imgs/ilab_20M' --viz_name ilab-20m
  • For RaFD
python3 main.py --train False --dataset RaFD --pretrain_model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --test_img_path './checkpoints/test_imgs/rafd' --viz_name rafd
  • For dsprites
python3 main.py --train False --dataset dsprites--pretrain_model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --test_img_path './checkpoints/test_imgs/dsprites' --viz_name dsprites

Train GZS-Net on datasets used in paper

Group-Supervised Zero-shot Synthesis Network (GZS-Net) is an implemetation of Group-Supervised Learning with only reconstruction loss. If you want to train GZS-Net with the 4 datasets used in paper (Fonts, iLab-20M, RaFD, dSprites), please use 'train.py' with the dataset name, dataset path and visualize pannel name in Visdom. Note: you can also set the hyperparameter of lr, batchsize, backbone structure in train.py Here are some examples:

  • For Fonts
python3 main.py --train True --dataset Fonts --dataset_path YOUR_LOCAL_PATH_OF_FONTS --viz_name fonts
  • For iLab-20M
python3 main.py --train True --dataset ilab-20M --dataset_path YOUR_LOCAL_PATH_OF_ILAB --viz_name ilab-20m
  • For RaFD
python3 main.py --train True --dataset RaFD --dataset_path YOUR_LOCAL_PATH_OF_RaFD --viz_name rafd
  • For dsprites
python3 main.py --train True --dataset dsprites--dataset_path YOUR_LOCAL_PATH_OF_DSPRITES --viz_name dsprites

Train GZS-Net on your own dataset

To use our GZS-Net on you own dataset, before training, please refer the admissible dataset description in our paper. Note: The high level training strategy of the 4 dataset that paper used (Fonts, iLab-20M, RaFD, dSprites) is shown in Figure.3 in our paper. However, to make our method more general and compatale with more dataset, we propose a easier way to train our GZS-Net, we called 'sample edge strategy' to achieve 'One-Overlap Attribute Swap': In each training step, we sample n different edges (each edge corresponding to a specific attribute), and we release the two requirement of edge sample: (1) the two samples connected by an edge with attribute A should have same attribute A value but do not need to have different attribute values of other attributes (e.g. attribute B and C value can be the same). (2) we do not need center image x to keep showing in all edges, which means the connected images between edges can be totally different.

We train ilab-20M with the new training strategy and you can cgange our example code of ilab_20M_custom to your custom dataset.

  • Take ilab_20M_custom dataset as an example
python3 train.py  --dataset ilab_20M_custom --dataset_path YOUR_LOCAL_PATH_OF_CUSTOM_DATASET --viz_name ilab_20M_custom

Citation

If you use this code for your research, please cite our papers.

@inproceedings{ge2021zeroshot,
  title={Zero-shot Synthesis with Group-Supervised Learning},
  author={Yunhao Ge and Sami Abu-El-Haija and Gan Xin and Laurent Itti},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=8wqCDnBmnrT}
}

Acknowledgments

Our code is inspired by Beta-VAE.

Owner
Andy_Ge
Ph.D. Student in Computer Vision, Machine Learning, and Baby Learning
Andy_Ge
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022