Fashion Landmark Estimation with HRNet

Overview

HRNet for Fashion Landmark Estimation

(Modified from deep-high-resolution-net.pytorch)

Introduction

This code applies the HRNet (Deep High-Resolution Representation Learning for Human Pose Estimation) onto fashion landmark estimation task using the DeepFashion2 dataset. HRNet maintains high-resolution representations throughout the forward path. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise.

Illustrating the architecture of the proposed HRNet

Please note that every image in DeepFashion2 contains multiple fashion items, while our model assumes that there exists only one item in each image. Therefore, what we feed into the HRNet is not the original image but the cropped ones provided by a detector. In experiments, one can either use the ground truth bounding box annotation to generate the input data or use the output of a detecter.

Main Results

Landmark Estimation Performance on DeepFashion2 Test set

We won the third place in the "DeepFashion2 Challenge 2020 - Track 1 Clothes Landmark Estimation" competition. DeepFashion2 Challenge 2020 - Track 1 Clothes Landmark Estimation

Landmark Estimation Performance on DeepFashion2 Validation Set

Arch BBox Source AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_hrnet Detector 0.579 0.793 0.658 0.460 0.581 0.706 0.939 0.784 0.548 0.708
pose_hrnet GT 0.702 0.956 0.801 0.579 0.703 0.740 0.965 0.827 0.592 0.741

Quick start

Installation

  1. Install pytorch >= v1.2 following official instruction. Note that if you use pytorch's version < v1.0.0, you should follow the instruction at https://github.com/Microsoft/human-pose-estimation.pytorch to disable cudnn's implementations of BatchNorm layer. We encourage you to use higher pytorch's version(>=v1.0.0)

  2. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Make libs:

    cd ${POSE_ROOT}/lib
    make
    
  5. Init output(training model output directory) and log(tensorboard log directory) directory:

    mkdir output 
    mkdir log
    

    Your directory tree should look like this:

    ${POSE_ROOT}
    |-- lib
    |-- tools 
    |-- experiments
    |-- models
    |-- data
    |-- log
    |-- output
    |-- README.md
    `-- requirements.txt
    
  6. Download pretrained models from our Onedrive Cloud Storage

Data preparation

Our experiments were conducted on DeepFashion2, clone this repo, and we'll call the directory that you cloned as ${DF2_ROOT}.

1) Download the dataset

Extract the dataset under ${POSE_ROOT}/data.

2) Convert annotations into coco-type

The above code repo provides a script to convert annotations into coco-type.

We uploaded our converted annotation file onto OneDrive named as train/val-coco_style.json. We also made truncated json files such as train-coco_style-32.json meaning the first 32 samples in the dataset to save the loading time during development period.

3) Install the deepfashion_api

Enter ${DF2_ROOT}/deepfashion2_api/PythonAPI and run

python setup.py install

Note that the deepfashion2_api is modified from the cocoapi without changing the package name. Therefore, conflicts occur if you try to install this package when you have installed the original cocoapi in your computer. We provide two feasible solutions: 1) run our code in a virtualenv 2) use the deepfashion2_api as a local pacakge. Also note that deepfashion2_api is different with cocoapi mainly in the number of classes and the values of standard variations for keypoints.

At last the directory should look like this:

${POSE_ROOT}
|-- data
`-- |-- deepfashion2
    `-- |-- train
        |   |-- image
        |   |-- annos                           (raw annotation)
        |   |-- train-coco_style.json           (converted annotation file)
        |   `-- train-coco_style-32.json      (truncated for fast debugging)
        |-- validation
        |   |-- image
        |   |-- annos                           (raw annotation)
        |   |-- val-coco_style.json             (converted annotation file)
        |   `-- val-coco_style-64.json        (truncated for fast debugging)
        `-- json_for_test
            `-- keypoints_test_information.json

Training and Testing

Note that the GPUS parameter in the yaml config file is deprecated. To select GPUs, use the environment varaible:

 export CUDA_VISIBLE_DEVICES=1

Testing on DeepFashion2 dataset with BBox from ground truth using trained models:

python tools/test.py \
    --cfg experiments/deepfashion2/hrnet/w48_384x288_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pose_hrnet-w48_384x288-deepfashion2_mAP_0.7017.pth \
    TEST.USE_GT_BBOX True

Testing on DeepFashion2 dataset with BBox from a detector using trained models:

python tools/test.py \
    --cfg experiments/deepfashion2/hrnet/w48_384x288_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pose_hrnet-w48_384x288-deepfashion2_mAP_0.7017.pth \
    TEST.DEEPFASHION2_BBOX_FILE data/bbox_result_val.pkl \

Training on DeepFashion2 dataset using pretrained models:

python tools/train.py \
    --cfg experiments/deepfashion2/hrnet/w48_384x288_adam_lr1e-3.yaml \
     MODEL.PRETRAINED models/pose_hrnet-w48_384x288-deepfashion2_mAP_0.7017.pth

Other options

python tools/test.py \
    ... \
    DATASET.MINI_DATASET True \ # use a subset of the annotation to save loading time
    TAG 'experiment description' \ # this info will appear in the output directory name
    WORKERS 4 \ # num_of_worker for the dataloader
    TEST.BATCH_SIZE_PER_GPU 8 \
    TRAIN.BATCH_SIZE_PER_GPU 8 \

OneDrive Cloud Storage

OneDrive

We provide the following files:

  • Model checkpoint files
  • Converted annotation files in coco-type
  • Bounding box results from our self-implemented detector in a pickle file.
hrnet-for-fashion-landmark-estimation.pytorch
|-- models
|   `-- pose_hrnet-w48_384x288-deepfashion2_mAP_0.7017.pth
|
|-- data
|   |-- bbox_result_val.pkl
|   |
`-- |-- deepfashion2
    `---|-- train
        |   |-- train-coco_style.json           (converted annotation file)
        |   `-- train-coco_style-32.json      (truncated for fast debugging)
        `-- validation
            |-- val-coco_style.json             (converted annotation file)
            `-- val-coco_style-64.json        (truncated for fast debugging)
        

Discussion

Experiment Configuration

  • For the regression target of keypoint heatmaps, we tuned the standard deviation value sigma and finally set it to 2.
  • During training, we found that the data augmentation from the original code was too intensive which makes the training process unstable. We weakened the augmentation parameters and observed performance gain.
  • Due to the imbalance of classes in DeepFashion2 dataset, the model's performance on different classes varies a lot. Therefore, we adopted a weighted sampling strategy rather than the naive random shuffling strategy, and observed performance gain.
  • We expermented with the value of weight decay, and found that either 1e-4 or 1e-5 harms the performance. Therefore, we simply set weight decay to 0.
Owner
SVIP Lab
ShanghaiTech Vision and Intelligent Perception Lab
SVIP Lab
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022