Fashion Landmark Estimation with HRNet

Overview

HRNet for Fashion Landmark Estimation

(Modified from deep-high-resolution-net.pytorch)

Introduction

This code applies the HRNet (Deep High-Resolution Representation Learning for Human Pose Estimation) onto fashion landmark estimation task using the DeepFashion2 dataset. HRNet maintains high-resolution representations throughout the forward path. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise.

Illustrating the architecture of the proposed HRNet

Please note that every image in DeepFashion2 contains multiple fashion items, while our model assumes that there exists only one item in each image. Therefore, what we feed into the HRNet is not the original image but the cropped ones provided by a detector. In experiments, one can either use the ground truth bounding box annotation to generate the input data or use the output of a detecter.

Main Results

Landmark Estimation Performance on DeepFashion2 Test set

We won the third place in the "DeepFashion2 Challenge 2020 - Track 1 Clothes Landmark Estimation" competition. DeepFashion2 Challenge 2020 - Track 1 Clothes Landmark Estimation

Landmark Estimation Performance on DeepFashion2 Validation Set

Arch BBox Source AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_hrnet Detector 0.579 0.793 0.658 0.460 0.581 0.706 0.939 0.784 0.548 0.708
pose_hrnet GT 0.702 0.956 0.801 0.579 0.703 0.740 0.965 0.827 0.592 0.741

Quick start

Installation

  1. Install pytorch >= v1.2 following official instruction. Note that if you use pytorch's version < v1.0.0, you should follow the instruction at https://github.com/Microsoft/human-pose-estimation.pytorch to disable cudnn's implementations of BatchNorm layer. We encourage you to use higher pytorch's version(>=v1.0.0)

  2. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Make libs:

    cd ${POSE_ROOT}/lib
    make
    
  5. Init output(training model output directory) and log(tensorboard log directory) directory:

    mkdir output 
    mkdir log
    

    Your directory tree should look like this:

    ${POSE_ROOT}
    |-- lib
    |-- tools 
    |-- experiments
    |-- models
    |-- data
    |-- log
    |-- output
    |-- README.md
    `-- requirements.txt
    
  6. Download pretrained models from our Onedrive Cloud Storage

Data preparation

Our experiments were conducted on DeepFashion2, clone this repo, and we'll call the directory that you cloned as ${DF2_ROOT}.

1) Download the dataset

Extract the dataset under ${POSE_ROOT}/data.

2) Convert annotations into coco-type

The above code repo provides a script to convert annotations into coco-type.

We uploaded our converted annotation file onto OneDrive named as train/val-coco_style.json. We also made truncated json files such as train-coco_style-32.json meaning the first 32 samples in the dataset to save the loading time during development period.

3) Install the deepfashion_api

Enter ${DF2_ROOT}/deepfashion2_api/PythonAPI and run

python setup.py install

Note that the deepfashion2_api is modified from the cocoapi without changing the package name. Therefore, conflicts occur if you try to install this package when you have installed the original cocoapi in your computer. We provide two feasible solutions: 1) run our code in a virtualenv 2) use the deepfashion2_api as a local pacakge. Also note that deepfashion2_api is different with cocoapi mainly in the number of classes and the values of standard variations for keypoints.

At last the directory should look like this:

${POSE_ROOT}
|-- data
`-- |-- deepfashion2
    `-- |-- train
        |   |-- image
        |   |-- annos                           (raw annotation)
        |   |-- train-coco_style.json           (converted annotation file)
        |   `-- train-coco_style-32.json      (truncated for fast debugging)
        |-- validation
        |   |-- image
        |   |-- annos                           (raw annotation)
        |   |-- val-coco_style.json             (converted annotation file)
        |   `-- val-coco_style-64.json        (truncated for fast debugging)
        `-- json_for_test
            `-- keypoints_test_information.json

Training and Testing

Note that the GPUS parameter in the yaml config file is deprecated. To select GPUs, use the environment varaible:

 export CUDA_VISIBLE_DEVICES=1

Testing on DeepFashion2 dataset with BBox from ground truth using trained models:

python tools/test.py \
    --cfg experiments/deepfashion2/hrnet/w48_384x288_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pose_hrnet-w48_384x288-deepfashion2_mAP_0.7017.pth \
    TEST.USE_GT_BBOX True

Testing on DeepFashion2 dataset with BBox from a detector using trained models:

python tools/test.py \
    --cfg experiments/deepfashion2/hrnet/w48_384x288_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pose_hrnet-w48_384x288-deepfashion2_mAP_0.7017.pth \
    TEST.DEEPFASHION2_BBOX_FILE data/bbox_result_val.pkl \

Training on DeepFashion2 dataset using pretrained models:

python tools/train.py \
    --cfg experiments/deepfashion2/hrnet/w48_384x288_adam_lr1e-3.yaml \
     MODEL.PRETRAINED models/pose_hrnet-w48_384x288-deepfashion2_mAP_0.7017.pth

Other options

python tools/test.py \
    ... \
    DATASET.MINI_DATASET True \ # use a subset of the annotation to save loading time
    TAG 'experiment description' \ # this info will appear in the output directory name
    WORKERS 4 \ # num_of_worker for the dataloader
    TEST.BATCH_SIZE_PER_GPU 8 \
    TRAIN.BATCH_SIZE_PER_GPU 8 \

OneDrive Cloud Storage

OneDrive

We provide the following files:

  • Model checkpoint files
  • Converted annotation files in coco-type
  • Bounding box results from our self-implemented detector in a pickle file.
hrnet-for-fashion-landmark-estimation.pytorch
|-- models
|   `-- pose_hrnet-w48_384x288-deepfashion2_mAP_0.7017.pth
|
|-- data
|   |-- bbox_result_val.pkl
|   |
`-- |-- deepfashion2
    `---|-- train
        |   |-- train-coco_style.json           (converted annotation file)
        |   `-- train-coco_style-32.json      (truncated for fast debugging)
        `-- validation
            |-- val-coco_style.json             (converted annotation file)
            `-- val-coco_style-64.json        (truncated for fast debugging)
        

Discussion

Experiment Configuration

  • For the regression target of keypoint heatmaps, we tuned the standard deviation value sigma and finally set it to 2.
  • During training, we found that the data augmentation from the original code was too intensive which makes the training process unstable. We weakened the augmentation parameters and observed performance gain.
  • Due to the imbalance of classes in DeepFashion2 dataset, the model's performance on different classes varies a lot. Therefore, we adopted a weighted sampling strategy rather than the naive random shuffling strategy, and observed performance gain.
  • We expermented with the value of weight decay, and found that either 1e-4 or 1e-5 harms the performance. Therefore, we simply set weight decay to 0.
Owner
SVIP Lab
ShanghaiTech Vision and Intelligent Perception Lab
SVIP Lab
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. 💜

Hacktober Fest 2021 🎉 Open source is changing the world – one contribution at a time! 🎉 This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Source code for paper: Knowledge Inheritance for Pre-trained Language Models

Knowledge-Inheritance Source code paper: Knowledge Inheritance for Pre-trained Language Models (preprint). The trained model parameters (in Fairseq fo

THUNLP 31 Nov 19, 2022