🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

Overview

PWC PWC License CC BY-NC-SA 4.0

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020)

This is the official implementation of RandLA-Net (CVPR2020, Oral presentation), a simple and efficient neural architecture for semantic segmentation of large-scale 3D point clouds. For technical details, please refer to:

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
Qingyong Hu, Bo Yang*, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, Andrew Markham.
[Paper] [Video] [Blog] [Project page]

(1) Setup

This code has been tested with Python 3.5, Tensorflow 1.11, CUDA 9.0 and cuDNN 7.4.1 on Ubuntu 16.04.

  • Clone the repository
git clone --depth=1 https://github.com/QingyongHu/RandLA-Net && cd RandLA-Net
  • Setup python environment
conda create -n randlanet python=3.5
source activate randlanet
pip install -r helper_requirements.txt
sh compile_op.sh

Update 03/21/2020, pre-trained models and results are available now. You can download the pre-trained models and results here. Note that, please specify the model path in the main function (e.g., main_S3DIS.py) if you want to use the pre-trained model and have a quick try of our RandLA-Net.

(2) S3DIS

S3DIS dataset can be found here. Download the files named "Stanford3dDataset_v1.2_Aligned_Version.zip". Uncompress the folder and move it to /data/S3DIS.

  • Preparing the dataset:
python utils/data_prepare_s3dis.py
  • Start 6-fold cross validation:
sh jobs_6_fold_cv_s3dis.sh
  • Move all the generated results (*.ply) in /test folder to /data/S3DIS/results, calculate the final mean IoU results:
python utils/6_fold_cv.py

Quantitative results of different approaches on S3DIS dataset (6-fold cross-validation):

a

Qualitative results of our RandLA-Net:

2 z

(3) Semantic3D

7zip is required to uncompress the raw data in this dataset, to install p7zip:

sudo apt-get install p7zip-full
  • Download and extract the dataset. First, please specify the path of the dataset by changing the BASE_DIR in "download_semantic3d.sh"
sh utils/download_semantic3d.sh
  • Preparing the dataset:
python utils/data_prepare_semantic3d.py
  • Start training:
python main_Semantic3D.py --mode train --gpu 0
  • Evaluation:
python main_Semantic3D.py --mode test --gpu 0

Quantitative results of different approaches on Semantic3D (reduced-8):

a

Qualitative results of our RandLA-Net:

z z
z z

Note:

  • Preferably with more than 64G RAM to process this dataset due to the large volume of point cloud

(4) SemanticKITTI

SemanticKITTI dataset can be found here. Download the files related to semantic segmentation and extract everything into the same folder. Uncompress the folder and move it to /data/semantic_kitti/dataset.

  • Preparing the dataset:
python utils/data_prepare_semantickitti.py
  • Start training:
python main_SemanticKITTI.py --mode train --gpu 0
  • Evaluation:
sh jobs_test_semantickitti.sh

Quantitative results of different approaches on SemanticKITTI dataset:

s

Qualitative results of our RandLA-Net:

zzz

(5) Demo

Citation

If you find our work useful in your research, please consider citing:

@article{hu2019randla,
  title={RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds},
  author={Hu, Qingyong and Yang, Bo and Xie, Linhai and Rosa, Stefano and Guo, Yulan and Wang, Zhihua and Trigoni, Niki and Markham, Andrew},
  journal={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020}
}

@article{hu2021learning,
  title={Learning Semantic Segmentation of Large-Scale Point Clouds with Random Sampling},
  author={Hu, Qingyong and Yang, Bo and Xie, Linhai and Rosa, Stefano and Guo, Yulan and Wang, Zhihua and Trigoni, Niki and Markham, Andrew},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}

Acknowledgment

  • Part of our code refers to nanoflann library and the the recent work KPConv.
  • We use blender to make the video demo.

License

Licensed under the CC BY-NC-SA 4.0 license, see LICENSE.

Updates

  • 21/03/2020: Updating all experimental results
  • 21/03/2020: Adding pretrained models and results
  • 02/03/2020: Code available!
  • 15/11/2019: Initial release!

Related Repos

  1. SoTA-Point-Cloud: Deep Learning for 3D Point Clouds: A Survey GitHub stars
  2. SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds GitHub stars
  3. 3D-BoNet: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds GitHub stars
  4. SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration GitHub stars
  5. SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds with 1000x Fewer Labels GitHub stars
Owner
Qingyong
Ph.D. student :man_student: in the Department of Computer Science at the University of Oxford :cn:
Qingyong
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
yufan 81 Dec 08, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection.

LightLog Introduction LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection. Function description [BG

25 Dec 17, 2022
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022