Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Overview

Kaggle-Happywhale

Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588)

竞赛方案思路

  1. 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集与测试集数据裁剪出背鳍或者身体部分;
  2. 背鳍图片特征提取模型:将训练集数据划分为训练与验证两部分,训练 EfficientNet_B6 / EfficientNet_V2_L / NFNet_L2 (backone)三个模型,并且都加上了GeM Pooling 和 Arcface 损失函数,有效增强类内紧凑度和类间分离度;
  3. 聚类与排序:利用最终训练完成的backone模型分别提取训练集与测试集的嵌入特征,所有模型都会输出一个512维的Embedding,将这些特征 concatenated 后获得了一个 512×9=4608 维的特征向量,将训练集的嵌入特征融合后训练KNN模型,然后推断测试集嵌入特征距离,排序获取top5类别,作为预测结果,最后使用new_individual替换进行后处理,得到了top2%的成绩。

Model

class HappyWhaleModel(nn.Module):
    def __init__(self, model_name, embedding_size, pretrained=True):
        super(HappyWhaleModel, self).__init__()
        self.model = timm.create_model(model_name, pretrained=pretrained) 

        if 'efficientnet' in model_name:
            in_features = self.model.classifier.in_features
            self.model.classifier = nn.Identity()
            self.model.global_pool = nn.Identity()
        elif 'nfnet' in model_name:
            in_features = self.model.head.fc.in_features
            self.model.head.fc = nn.Identity()
            self.model.head.global_pool = nn.Identity()

        self.pooling = GeM() 
        self.embedding = nn.Sequential(
                            nn.BatchNorm1d(in_features),
                            nn.Linear(in_features, embedding_size)
                            )
        # arcface
        self.fc = ArcMarginProduct(embedding_size,
                                   CONFIG["num_classes"], 
                                   s=CONFIG["s"],
                                   m=CONFIG["m"], 
                                   easy_margin=CONFIG["easy_margin"], 
                                   ls_eps=CONFIG["ls_eps"]) 

    def forward(self, images, labels):
        features = self.model(images)  
        pooled_features = self.pooling(features).flatten(1)
        embedding = self.embedding(pooled_features) # embedding
        output = self.fc(embedding, labels) # arcface
        return output
    
    def extract(self, images):
        features = self.model(images) 
        pooled_features = self.pooling(features).flatten(1)
        embedding = self.embedding(pooled_features) # embedding
        return embedding

ArcFace

# Arcface
class ArcMarginProduct(nn.Module):
    r"""Implement of large margin arc distance: :
        Args:
            in_features: size of each input sample
            out_features: size of each output sample
            s: norm of input feature
            m: margin
            cos(theta + m)
        """
    def __init__(self, in_features, out_features, s=30.0, 
                 m=0.50, easy_margin=False, ls_eps=0.0):
        super(ArcMarginProduct, self).__init__()
        self.in_features = in_features 
        self.out_features = out_features 
        self.s = s
        self.m = m 
        self.ls_eps = ls_eps 
        self.weight = nn.Parameter(torch.FloatTensor(out_features, in_features))
        nn.init.xavier_uniform_(self.weight)

        self.easy_margin = easy_margin
        self.cos_m = math.cos(m) # cos margin
        self.sin_m = math.sin(m) # sin margin
        self.threshold = math.cos(math.pi - m) # cos(pi - m) = -cos(m)
        self.mm = math.sin(math.pi - m) * m # sin(pi - m)*m = sin(m)*m

    def forward(self, input, label):
        # --------------------------- cos(theta) & phi(theta) ---------------------
        cosine = F.linear(F.normalize(input), F.normalize(self.weight)) 
        sine = torch.sqrt(1.0 - torch.pow(cosine, 2)) 
        phi = cosine * self.cos_m - sine * self.sin_m # cosθ*cosm – sinθ*sinm = cos(θ + m)
        phi = phi.float() # phi to float
        cosine = cosine.float() # cosine to float
        if self.easy_margin:
            phi = torch.where(cosine > 0, phi, cosine)
        else:
            # if cos(θ) > cos(pi - m) means θ + m < math.pi, so phi = cos(θ + m);
            # else means θ + m >= math.pi, we use Talyer extension to approximate the cos(θ + m).
            # if fact, cos(θ + m) = cos(θ) - m * sin(θ) >= cos(θ) - m * sin(math.pi - m)
            phi = torch.where(cosine > self.threshold, phi, cosine - self.mm)
            
        # https://github.com/ronghuaiyang/arcface-pytorch/issues/48
        # --------------------------- convert label to one-hot ---------------------
        # one_hot = torch.zeros(cosine.size(), requires_grad=True, device='cuda')
        one_hot = torch.zeros(cosine.size(), device=CONFIG['device'])
        one_hot.scatter_(1, label.view(-1, 1).long(), 1)
        # label smoothing
        if self.ls_eps > 0:
            one_hot = (1 - self.ls_eps) * one_hot + self.ls_eps / self.out_features
        # -------------torch.where(out_i = {x_i if condition_i else y_i) ------------
        output = (one_hot * phi) + ((1.0 - one_hot) * cosine)  
        output *= self.s

        return output

冲榜历程

  1. 使用Yolov5切分 fullbody数据 和 backfins数据;
  2. 使用小模型tf_efficientnet_b0_ns + ArcFace 作为 Baseline,训练fullbody 512size, 使用kNN 搜寻,搭建初步的pipeline,Public LB : 0.729;
  3. 加入new_individual后处理,Public LB : 0.742;
  4. 使用fullbody 768size图像,并调整了数据增强, Public LB : 0.770;
  5. 训练 tf_efficientnet_b6_ns ,以及上述所有功能微调,Public LB:0.832;
  6. 训练 tf_efficientnetv2_l_in21k,以及上述所有功能微调,Public LB:0.843;
  7. 训练 eca_nfnet_l2,以及上述所有功能微调,Public LB:0.854;
  8. 将上述三个模型的5Fold,挑选cv高的,进行融合,Public LB:0.858;

代码、数据集

  • 代码

    • Happywhale_crop_image.ipynb # 裁切fullbody数据和backfin数据
    • Happywhale_train.ipynb # 训练代码 (最低要求GPU显存不小于12G)
    • Happywhale_infernce.ipynb # 推理代码以及kNN计算和后处理
  • 数据集

写在后面

感谢我的队友徐哥和他的3090们 🤣

Owner
Franxx
Franxx
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
graph-theoretic framework for robust pairwise data association

CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides

MIT Aerospace Controls Laboratory 118 Dec 28, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022