Reinforcement Learning for the Blackjack

Overview

Reinforcement Learning for Blackjack

Author: ZHA Mengyue

Math Department of HKUST

Problem Statement

We study playing Blackjack by reinforcement learning. Prediction methods used to update q-value function for option here are Monte Carlo, Q Learning and Temporal Difference. We also test the algorithm under different combination of (M, N). M is the number of decks and N denotes N-1 palyers with 1 dealer. For each configuration, we find the optimal policy after iterations. Outcomes of three pre diction methods are compared by visualization and tables.

Since the detailed rules in different casinos of different areas varies a lot, we describe the one we adopt in the code here. The rule we used basically follows the one in Sutton's book (Example 5.1, p.93, Chapter 5).

Card Count:

  • 2-9: the number on the cards
  • Jack, Queen, King: 10
  • Ace: 1 or 11, maximizing the points player gets that no more than 21
  • Jockers: not used in the Blackjack

Game Initialization

Cards Initialization

We consider the case each player compete independently with the dealer. The game initialize with two cards dealt to both the players and the dealer. All cards dealt in initialization are faced up except for the second one dealt to the dealer.

Instant Wins

If the palyer has 21 after initialization (an Ace and a 10-card), it's called a natural and that palyer wins unless the dealer also has a natural. In the case both some players and the dealer has a natual then the game is a draw.

Game On

The players turn first:

Players request additional cards one by one (Hit) until it choose to stop (Stick) or the points got after last hit exceeds 21 (Bust) and then is the next player's turn. If one player goes bust then it loses immediately or we will see later after the dealer's turn.

If all palyers go bust then the dealder immediately wins no matter his points later. If there are some players stick successfully without an bust then the dealer's turn begins. The dealer sticks on any sum of 17 or greater and hits otherwise. Note that the dealer's strategy is fixed without any choice.

Game over

We compare the points for the successful players stick before a bust and the dealer to determine the final reward. If the dealer goes bust then the survival palyers wins then the final outcome —— win, lose and draw are determined by whose final sum is closer to 2.

Rewards

  • win: +1
  • lose: -1
  • draw: 0

Game Implementation Details

All rewards with in a game are zero and we use the discount factor $\gamma=1$ which means the terminal rewards are also the returns.

State:

  • (players' card points, dealer's dhowing card points)

Action:

  • hit: 0
  • stick: 1

Decks:

Denoted by termianl input variable M (eg. --M=2 means two decks are used in the game). If the users want to use infinite deck aka with replacement then they should type --M=0 because the code recognize 0 deck as infinite deck.

In order to make sure that the cards are sufficient we also insert a mechanism to automatically reinitialize the decks once the number of cards left are smaller than $M * 52 * 0.6$ . BTW, infinite decks make keeping track of the already dealt cards impossible.

Homework Statement

Assume that in the Blackjack game, there are $m$ decks of cards, and $n$ players (a dealer vs $n-1$ players). The rules of the game are explained above.

(1) Find the optimal policy for the Blackjack, when m=inf, n=2. You can use any of the methods learned so far in class (e.g. Monte Carlo, TD, or Q-Learning). If you use more than one method, do they reach the same optimal policy?

(2) Visualise the value functions and policy as done in Figures 5.1 and 5.2 in Sutton's book.

(3) Redo (1) for different combinations of (m,n), e.g. $m=6, 3, 1$, and $n=3,4,6$. What are differences?

Implementation

File Structure

  • main.py: main code needs terminal variable aissignment for the number of $m$ decks (--m) and the number of $n$ people (--n). One dealer and $n-1$ players.

    NOTE: Our main.py accepts receive a list of m and n as the inputs and doing the experiments of combination of these m's and n's. Once you run the main.py, it builds several instances under corresponding INSTANCE folder where each instance is basically an experiment with a try on a set of specific hyperparameters. We list the hyperparameters below and discuss them later.

    • m: number of decks
    • n: number of people
    • update: the method used to update the value or q value function. eg. Monte Carlo, Q Learning and Temporal Difference
    • policy: the policy improvement strategy. choices are epsilon greedy policy and the best policy.

    Other hyperparameters are epoches, n_zeros and session.

  • config.json: stores the configuration. This config.json is only a template. We will create new ones for experiments with different hyperparameters combination later.

    • epochs: how many times of the Blackjack we played with the algorithm to train it.
    • update: the method used to update the q-value function
    • name: the name of the experiment
    • policy: policy method used for the experiment
    • n_zero: a factor used to calculate the $\epsilon$ in epsilon greedy policy
  • deck.py: class Deck()

    • def __ init __(): initialize the $m$ decks
    • def shuffle(): suffle the decks
    • def pop(): pop up a card and delete it from the decks
  • player.py: class Player()

    • def hit(): hit action
    • def call_points(): player return the points it got
  • game.py: class Game()

    • def __ init __(): Initialize a game as described in the problem statement, game initialization section.
    • def step(): given the current state and action, return the next state and reward
  • utils.py

    • def MC(): Monte Carlo update function
    • def QL(): Q Learning update function
    • def TD(): Temporal Difference update function
    • def save_value(): save the Q value function in the form that every row is (player's points, dealer's points, action, value)
    • def save_win_records(): save the (state, action, value) pairs visited by a specific palyer
  • plot.py

    • def plot_single_player(): plot the (state, action, value) pairs visited by a specific player
    • def plot_state_action_value(): plot the value function learned
    • All pics created in this section will be stored in the path HOME+STORAGE+INSTANCE+pic

Example

  1. Prepare the environment

    conda create -n Blackjack python=3.6
    conda activate Blackjack

    Now your working environment is the Blackjack now. Let's install the necessary packages. We have listed all packages in requirement.txt

    pip install -r requirement.txt
    

    Now your environment should be fully ready.

  2. Experiments on a single Instance

    The following code blocks plays the Blackjack with m=2 decks and n=3 people where 2 are players and one is the dealer.

    python main.py --m=2, --n=3
    

    Note that when $m=\infty$, we use --m=0 instead.

    python main.py --m=0, --n=2
  3. Experiments on instances of combinations of (m, n)

    Also you can test the combinations of (m, n) pairs. For example, m= 6, 3, 1 and n= 3, 4, 6

    python main.py --m 6 3 1 --n 3 4 6
  4. Experiments on $m=\infty$

    We use --m=0 infers to use infinite decks in the game instead.

  5. The optimal policy

    We store the final Q-value function instead and the optimal poliy are derived from it by either best policy or epsilon greedy policy.

    The value.csv are stored in thecorresponding instance folder as:

    MC_best_value.csv

    MC_epsilon_value.csv

    QL_best_value.csv

    etc.

Tabular Summary for the Experiments

Choices for policy update: policy=['best', 'epsilon']

Choices for policy evaluateion(value function update): update=['MC', 'QL', 'TD']

  • best: best policy evaluation
  • epsilon: epsilon greedy policy evaluation
  • MC: Monte Carlo
  • QL: Q Learning
  • TD: Temporal Difference

Single Instance of $m=\infty$, $n=2$

m=$\infty$, n=2 MC QL TD
best policy 39.9040% 37.9700% 37.1210%
epsilon greedy policy 42.4840% 41.3440% 41.2620%

Conclusions:

  • epsilon greedy policy outperforms best policy
  • The best update strategy is MC and TD has the lowest performance

Combination of m=[6, 3, 1], n=[3, 4, 6]

We summary the performance of (update_policy) combinations in the tables below.

MC_best n=3 n=4 n=6
m=6 40.0435% 40.1663% 39.7334%
m=3 39.7110% 39.7077% 39.1590%
m=1 40.5960% 40.2913% 39.2028%
MC_epsilon n=3 n=4 n=6
m=6 42.0310% 42.1147% 42.5882%
m=3 42.4060% 42.5710% 42.1484%
m=1 42.5700% 42.6407% 42.6614%
QL_best n=3 n=4 n=6
m=6 38.935% 38.5240% 38.5292%
m=3 39.1540% 38.4173% 38.7022%
m=1 39.5825% 39.3437% 38.9810%
QL_epsilon n=3 n=4 n=6
m=6 41.3675% 41.5430% 41.4012%
m=3 41.5625% 41.7900% 41.3582%
m=1 41.8030% 42.0723% 41.7474%
TD_best n=3 n=4 n=6
m=6 39.3855% 40.2017% 39.5762%
m=3 39.9090% 40.3023% 39.6646%
m=1 39.4165% 39.6960% 40.2408%
TD_epsilon n=3 n=4 n=6
m=6 41.4880% 41.0790% 41.0342%
m=3 41.1925% 41.0230% 41.2132%
m=1 41.6990% 41.3067% 41.3138%

Conclusions

  • epsilon greedy policy outperforms best policy
  • The best update strategy is MC and TD has the lowest performance
  • For MC_best, the more players are in, the less chance they will win
  • For MC_epsilon, if we see the values in table as an matrix, the lower triangle part is greater than the upper triangle part. This means players enjoys greater chance to win when many players palying with few decks (just one deck is perfect!).
  • The conclusions for QL_best and QL_epsilon are the same with MC_epsilon.
  • For TD_best and TD_epsilon, the phenomenon in MC_epsilon is quite weak. Some combinations of $(m, n)$ in the upper triangle part are quite well.
    • TD_best: (m=6, n=4), (m=3,n=4)
    • TD_epsilon: (m=6, n=3)

Testing

We provide useful test codes and print commands bracket by the annotation sign """ """ inside the code. If you would like to test the code in small sclae, you can assign epochs to be 10 and n_seros to be 2. Then release the print in lines 79-81, 159-165, 172-181, 203-212 in main.py. You may also test objects like player, deck and game in the corresponding python file after releasing the annotation on the last few lines.

Hyperparameters

All settable hyperparameters except for $m$ and $n$ are assigned by the instance level config.json under the instance's folder.

Some hypperparameters has finite many choices and will be generated in the main.py when different instances are created. We will write these hyperparameters into the instance level config.json that inherited from the template config.json (under the INSTANCE folder).

  • update: choices in ['MC', 'QL', 'TD']
  • name: choices in the combination of form 'update-epsilon' or 'update-best' for policy being epsilon greedy policy and best policy respectively.
  • policy: choices in ['epsilon_greedy_policy', 'best_policy']

We also has some higher level hyperparameters that are assigned in the template config.json. Note that these hyperparameters are the same for all instances created by call main.py once. They are:

  • epochs: number of iterations.
  • n_zeros: a constant for determine the value of $\epsilon$ in epsilon greedy policy
  • session: denotes how often we summay the performance of a given player in plot.py. For example, if session = 1000, we summary its wins losses and draws every 1000 actions.

Visualization

We illustrate the typical plots as examples and you want to see more, please visit the subfolder with path = STORAGE/INSTANCE/pic

Visualization on m=inf, n=2

We only take the update=MC as example and you should refer to Blackjack/storage/m0n2/pic/ for outcomes for QL and TD

Value Function Visualization

MC_best_value visualization

MC_epsilon_value visualization

Remark

Since I forgot to add the labels for x-axis, y-axis and z-axis when doing the experiment, their position and labels are denoted by the following Pseudo Value Function Plot. All axes' arrangements in the figures of this repository follow the left-hand rule. You may refer to the following pic to identify the arrangement and meaning of the x, y, z axes.

Player Performance Visualization

Visualize MC

MC_best_player_1 visualization

MC_epsilon_player_1 vs. MC_best_player_1 visualization

We see clearly that under the update rule MC, the player with epsilon greedy policy performs consistently better than they player with the deterministic best policy. The outcome shows that expolration is important !!!

Compare MC, QL, TD and best, epsilon

We have the following conclusions by observing the player performance visualization on update=[MC, QL, TD] and policy=[best, epsilon]

  • epsilon greedy policy outperforms the best policy consistently no matter which update strategy we adopt.

  • For a fixed policy, the performances of update strategies are MC>QL>TD

    The reason we guess is that since the Blackjack game has a relative small state space and action space, some advantages of MC are maximized:

    • precise real return without apprixiamtion
    • sampled long trajectories making memory on the card possible.

Citation

If you use my Blackjack in any context, please cite this repository:

@article{
  ZHA2021:RL_Blackjack,
  title={Reinforcement Learning for the Blackjack},
  author={ZHA Mengyue},
  year={2021},
  url={https://github.com/Dolores2333/Blackjack}
}

This work is done by ZHA Mengyue for Homework1 in MATH6450I Reinforcement Learning lectured by Prof Bing-yi Jing in HKUST. Please cite the repository if you use the code and outcomes.

Owner
Dolores
👉 👉 👉
Dolores
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022