Reaction SMILES-AA mapping via language modelling

Overview

rxn-aa-mapper

Reactions SMILES-AA sequence mapping

setup

conda env create -f conda.yml
conda activate rxn_aa_mapper

In the following we consider on examples provided to show how to use RXNAAMapper.

generate a vocabulary to be used with the EnzymaticReactionBertTokenizer

Create a vocabulary compatible with the enzymatic reaction tokenizer:

create-enzymatic-reaction-vocabulary ./examples/data-samples/biochemical ./examples/token_75K_min_600_max_750_500K.json /tmp/vocabulary.txt "*.csv"

use the tokenizer

Using the examples vocabulary and AA tokenizer provided, we can observe the enzymatic reaction tokenizer in action:

from rxn_aa_mapper.tokenization import EnzymaticReactionBertTokenizer

tokenizer = EnzymaticReactionBertTokenizer(
    vocabulary_file="./examples/vocabulary_token_75K_min_600_max_750_500K.txt",
    aa_sequence_tokenizer_filepath="./examples/token_75K_min_600_max_750_500K.json"
)
tokenizer.tokenize("NC(=O)c1ccc[n+]([C@@H]2O[[email protected]](COP(=O)(O)OP(=O)(O)OC[[email protected]]3O[C@@H](n4cnc5c(N)ncnc54)[[email protected]](O)[C@@H]3O)[C@@H](O)[[email protected]]2O)c1.O=C([O-])CC(C(=O)[O-])C(O)C(=O)[O-]|AGGVKTVTLIPGDGIGPEISAAVMKIFDAAKAPIQANVRPCVSIEGYKFNEMYLDTVCLNIETACFATIKCSDFTEEICREVAENCKDIK>>O=C([O-])CCC(=O)C(=O)[O-]")

train the model

The mlm-trainer script can be used to train a model via MTL:

mlm-trainer \
    ./examples/data-samples/biochemical ./examples/data-samples/biochemical \  # just a sample, simply split data in a train and a validation folder
    ./examples/vocabulary_token_75K_min_600_max_750_500K.txt /tmp/mlm-trainer-log \
    ./examples/sample-config.json "*.csv" 1 \  # for a more realistic config see ./examples/config.json
    ./examples/data-samples/organic ./examples/data-samples/organic \  # just a sample, simply split data in a train and a validation folder
    ./examples/token_75K_min_600_max_750_500K.json

Checkpoints will be stored in the /tmp/mlm-trainer-log for later usage in identification of active sites.

Those can be turned into an HuggingFace model by simply running:

checkpoint-to-hf-model /path/to/model.ckpt /tmp/rxnaamapper-pretrained-model ./examples/vocabulary_token_75K_min_600_max_750_500K.txt ./examples/sample-config.json ./examples/token_75K_min_600_max_750_500K.json

predict active site

The trained model can used to map reactant atoms to AA sequence locations that potentially represent the active site.

from rxn_aa_mapper.aa_mapper import RXNAAMapper

config_mapper = {
    "vocabulary_file": "./examples/vocabulary_token_75K_min_600_max_750_500K.txt",
    "aa_sequence_tokenizer_filepath": "./examples/token_75K_min_600_max_750_500K.json",
    "model_path": "/tmp/rxnaamapper-pretrained-model",
    "head": 3,
    "layers": [11],
    "top_k": 1,
}
mapper = RXNAAMapper(config=config_mapper)
mapper.get_reactant_aa_sequence_attention_guided_maps(["NC(=O)c1ccc[n+]([C@@H]2O[[email protected]](COP(=O)(O)OP(=O)(O)OC[[email protected]]3O[C@@H](n4cnc5c(N)ncnc54)[[email protected]](O)[C@@H]3O)[C@@H](O)[[email protected]]2O)c1.O=C([O-])CC(C(=O)[O-])C(O)C(=O)[O-]|AGGVKTVTLIPGDGIGPEISAAVMKIFDAAKAPIQANVRPCVSIEGYKFNEMYLDTVCLNIETACFATIKCSDFTEEICREVAENCKDIK>>O=C([O-])CCC(=O)C(=O)[O-]"])

citation

@article{dassi2021identification,
  title={Identification of Enzymatic Active Sites with Unsupervised Language Modeling},
  author={Dassi, Lo{\"\i}c Kwate and Manica, Matteo and Probst, Daniel and Schwaller, Philippe and Teukam, Yves Gaetan Nana and Laino, Teodoro},
  year={2021}
  conference={AI for Science: Mind the Gaps at NeurIPS 2021, ELLIS Machine Learning for Molecule Discovery Workshop 2021}
}
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022