PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

Related tags

Deep LearningMINE
Overview

MINE: Continuous-Depth MPI with Neural Radiance Fields

Project Page | Video

PyTorch implementation for our ICCV 2021 paper.

MINE: Towards Continuous Depth MPI with NeRF for Novel View Synthesis
Jiaxin Li*1, Zijian Feng*1, Qi She1, Henghui Ding1, Changhu Wang1, Gim Hee Lee2
1ByteDance, 2National University of Singapore
*denotes equal contribution

Our MINE takes a single image as input and densely reconstructs the frustum of the camera, through which we can easily render novel views of the given scene:

ferngif

The overall architecture of our method:

Run training on the LLFF dataset:

Firstly, set up your conda environment:

conda env create -f environment.yml 
conda activate MINE

Download the pre-downsampled version of the LLFF dataset from Google Drive, unzip it and put it in the root of the project, then start training by running the following command:

sh start_training.sh MASTER_ADDR="localhost" MASTER_PORT=1234 N_NODES=1 GPUS_PER_NODE=2 NODE_RANK=0 WORKSPACE=/run/user/3861/vs_tmp DATASET=llff VERSION=debug EXTRA_CONFIG='{"training.gpus": "0,1"}'

You may find the tensorboard logs and checkpoints in the sub-working directory (WORKSPACE + VERSION).

Apart from the LLFF dataset, we experimented on the RealEstate10K, KITTI Raw and the Flowers Light Fields datasets - the data pre-processing codes and training flow for these datasets will be released later.

Running our pretrained models:

We release the pretrained models trained on the RealEstate10K, KITTI and the Flowers datasets:

Dataset N Input Resolution Download Link
RealEstate10K 32 384x256 Google Drive
RealEstate10K 64 384x256 Google Drive
KITTI 32 768x256 Google Drive
KITTI 64 768x256 Google Drive
Flowers 32 512x384 Google Drive
Flowers 64 512x384 Google Drive

To run the models, download the checkpoint and the hyper-parameter yaml file and place them in the same directory, then run the following script:

python3 visualizations/image_to_video.py --checkpoint_path MINE_realestate10k_384x256_monodepth2_N64/checkpoint.pth --gpus 0 --data_path visualizations/home.jpg --output_dir .

Citation

If you find our work helpful to your research, please cite our paper:

@inproceedings{mine2021,
  title={MINE: Towards Continuous Depth MPI with NeRF for Novel View Synthesis},
  author={Jiaxin Li and Zijian Feng and Qi She and Henghui Ding and Changhu Wang and Gim Hee Lee},
  year={2021},
  booktitle={ICCV},
}
Owner
Zijian Feng
machine learning | computer vision | random traveller | music enthusiast
Zijian Feng
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022