rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Overview

rliable

rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Desideratum Current evaluation approach Our Recommendation
Uncertainty in aggregate performance Point estimates:
  • Ignore statistical uncertainty
  • Hinder results reproducibility
Interval estimates using stratified bootstrap confidence intervals (CIs)
Performance variability across tasks and runs Tables with task mean scores:
  • Overwhelming beyond a few tasks
  • Standard deviations frequently omitted
  • Incomplete picture for multimodal and heavy-tailed distributions
Score distributions (performance profiles):
  • Show tail distribution of scores on combined runs across tasks
  • Allow qualitative comparisons
  • Easily read any score percentile
Aggregate metrics for summarizing benchmark performance Mean:
  • Often dominated by performance on outlier tasks
  Median:
  • Statistically inefficient (requires a large number of runs to claim improvements)
  • Poor indicator of overall performance: 0 scores on nearly half the tasks doesn't change it
Interquartile Mean (IQM) across all runs:
  • Performance on middle 50% of combined runs
  • Robust to outlier scores but more statistically efficient than median
To show other aspects of performance gains, report Probability of improvement and Optimality gap

rliable provides support for:

  • Stratified Bootstrap Confidence Intervals (CIs)
  • Performance Profiles (with plotting functions)
  • Aggregate metrics
    • Interquartile Mean (IQM) across all runs
    • Optimality Gap
    • Probability of Improvement

Interactive colab

We provide a colab at bit.ly/statistical_precipice_colab, which shows how to use the library with examples of published algorithms on widely used benchmarks including Atari 100k, ALE, DM Control and Procgen.

Paper

For more details, refer to the accompanying NeurIPS 2021 paper (Oral): Deep Reinforcement Learning at the Edge of the Statistical Precipice.

Installation

To install rliable, run:

pip install -U rliable

To install latest version of rliable as a package, run:

pip install git+https://github.com/google-research/rliable

To import rliable, we suggest:

from rliable import library as rly
from rliable import metrics
from rliable import plot_utils

Aggregate metrics with 95% Stratified Bootstrap CIs

IQM, Optimality Gap, Median, Mean
algorithms = ['DQN (Nature)', 'DQN (Adam)', 'C51', 'REM', 'Rainbow',
              'IQN', 'M-IQN', 'DreamerV2']
# Load ALE scores as a dictionary mapping algorithms to their human normalized
# score matrices, each of which is of size `(num_runs x num_games)`.
atari_200m_normalized_score_dict = ...
aggregate_func = lambda x: np.array([
  metrics.aggregate_median(x),
  metrics.aggregate_iqm(x),
  metrics.aggregate_mean(x),
  metrics.aggregate_optimality_gap(x)])
aggregate_scores, aggregate_score_cis = rly.get_interval_estimates(
  atari_200m_normalized_score_dict, aggregate_func, reps=50000)
fig, axes = plot_utils.plot_interval_estimates(
  aggregate_scores, aggregate_score_cis,
  metric_names=['Median', 'IQM', 'Mean', 'Optimality Gap'],
  algorithms=algorithms, xlabel='Human Normalized Score')
Probability of Improvement
# Load ProcGen scores as a dictionary containing pairs of normalized score
# matrices for pairs of algorithms we want to compare
procgen_algorithm_pairs = {.. , 'x,y': (score_x, score_y), ..}
average_probabilities, average_prob_cis = rly.get_interval_estimates(
  procgen_algorithm_pairs, metrics.probability_of_improvement, reps=50000)
plot_probability_of_improvement(average_probabilities, average_prob_cis)

Sample Efficiency Curve

algorithms = ['DQN (Nature)', 'DQN (Adam)', 'C51', 'REM', 'Rainbow',
              'IQN', 'M-IQN', 'DreamerV2']
# Load ALE scores as a dictionary mapping algorithms to their human normalized
# score matrices across all 200 million frames, each of which is of size
# `(num_runs x num_games x 200)` where scores are recorded every million frame.
ale_all_frames_scores_dict = ...
frames = np.array([1, 10, 25, 50, 75, 100, 125, 150, 175, 200]) - 1
ale_frames_scores_dict = {algorithm: score[:, :, frames] for algorithm, score
                          in ale_all_frames_scores_dict.items()}
iqm = lambda scores: np.array([metrics.aggregate_iqm(scores[..., frame])
                               for frame in range(scores.shape[-1])])
iqm_scores, iqm_cis = rly.get_interval_estimates(
  ale_frames_scores_dict, iqm, reps=50000)
plot_utils.plot_sample_efficiency_curve(
    frames+1, iqm_scores, iqm_cis, algorithms=algorithms,
    xlabel=r'Number of Frames (in millions)',
    ylabel='IQM Human Normalized Score')

Performance Profiles

# Load ALE scores as a dictionary mapping algorithms to their human normalized
# score matrices, each of which is of size `(num_runs x num_games)`.
atari_200m_normalized_score_dict = ...
# Human normalized score thresholds
atari_200m_thresholds = np.linspace(0.0, 8.0, 81)
score_distributions, score_distributions_cis = rly.create_performance_profile(
    atari_200m_normalized_score_dict, atari_200m_thresholds)
# Plot score distributions
fig, ax = plt.subplots(ncols=1, figsize=(7, 5))
plot_utils.plot_performance_profiles(
  score_distributions, atari_200m_thresholds,
  performance_profile_cis=score_distributions_cis,
  colors=dict(zip(algorithms, sns.color_palette('colorblind'))),
  xlabel=r'Human Normalized Score $(\tau)$',
  ax=ax)

The above profile can also be plotted with non-linear scaling as follows:

plot_utils.plot_performance_profiles(
  perf_prof_atari_200m, atari_200m_tau,
  performance_profile_cis=perf_prof_atari_200m_cis,
  use_non_linear_scaling=True,
  xticks = [0.0, 0.5, 1.0, 2.0, 4.0, 8.0]
  colors=dict(zip(algorithms, sns.color_palette('colorblind'))),
  xlabel=r'Human Normalized Score $(\tau)$',
  ax=ax)

Dependencies

The code was tested under Python>=3.7 and uses these packages:

  • arch >= 4.19
  • scipy >= 1.7.0
  • numpy >= 0.9.0
  • absl-py >= 1.16.4

Citing

If you find this open source release useful, please reference in your paper:

@article{agarwal2021deep,
  title={Deep Reinforcement Learning at the Edge of the Statistical Precipice},
  author={Agarwal, Rishabh and Schwarzer, Max and Castro, Pablo Samuel
          and Courville, Aaron and Bellemare, Marc G},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}

Disclaimer: This is not an official Google product.

Comments
  • RAD results may be incorrect.

    RAD results may be incorrect.

    Hi @agarwl. I found that the 'step' in RAD's 'eval.log' refers to the policy step. But the 'step' in 'xxx--eval_scores.npy' refers to the environment step. We know that 'environment step = policy step * action_repreat'.

    Here comes a problem: if you use the results of 100k steps in 'eval.log', then you actually evaluate the scores at 100k*action_repeat steps. This will lead to the overestimation of RAD. And I wonder whether you do such incorrect evaluations, or you take the results in 'xxx--eval_scores.npy', which are correct in terms of 'steps'. You may refer to a similar question in https://github.com/MishaLaskin/rad/issues/15.

    I reproduced the results of RAD locally, and I found my results are much worse than the reported ones (in your paper). I list them in the following figure. QQ20211223-153829

    I compare the means of each task. Obviously, there is a huge gap, and my results are close to the ones reported by DrQ authors (see the Table in https://github.com/MishaLaskin/rad/issues/1). I guess you may evaluate scores at incorrect environment steps? So, could you please offer more details when evaluating RAD? Thanks :)

    opened by TaoHuang13 19
  • Installation fails on MacBook Pro with M1 chip

    Installation fails on MacBook Pro with M1 chip

    The installation fails on my MacBook Pro with M1 chip.

    I also tried on a MacBook Pro with an Intel chip (and the same OS version) and on a Linux system: the installation was successful on both configurations.

    $ cd rliable
    $ pip install -e .
    Obtaining file:///Users/quentingallouedec/rliable
      Preparing metadata (setup.py) ... done
    Collecting arch==5.0.1
      Using cached arch-5.0.1.tar.gz (937 kB)
      Installing build dependencies ... error
      error: subprocess-exited-with-error
    
    ... # Log too long for GitHub issue
    
    error: subprocess-exited-with-error
    
    × pip subprocess to install build dependencies did not run successfully.
    │ exit code: 1
    ╰─> See above for output.
    
    note: This error originates from a subprocess, and is likely not a problem with pip.
    

    System info

    • Python version: 3.9
    • System Version: macOS 12.4 (21F79)
    • Kernel Version: Darwin 21.5.0

    What I've tried

    Install only arch 5.0.1

    It seems to be related with the installation of arch. I've tried to pip install arch==5.0.1 and it also failed with the same logs.

    Install the last version of arch

    I've tried to pip install arch (current version: 5.2.0), and it worked.

    Use rliable with the last version of arch

    Since I can install arch==5.2.0, I've tried to make rliable work with arch 5.2.0 (by modifying manually setup.py). Pytest failed. Here is the logs for one of the failing unitest:

    _____________________________________________ LibraryTest.test_stratified_bootstrap_runs_and_tasks _____________________________________________
    
    self = <library_test.LibraryTest testMethod=test_stratified_bootstrap_runs_and_tasks>, task_bootstrap = True
    
        @parameterized.named_parameters(
            dict(testcase_name="runs_only", task_bootstrap=False),
            dict(testcase_name="runs_and_tasks", task_bootstrap=True))
        def test_stratified_bootstrap(self, task_bootstrap):
          """Tests StratifiedBootstrap."""
          bs = rly.StratifiedBootstrap(
              self._x, y=self._y, z=self._z, task_bootstrap=task_bootstrap)
    >     for data, kwdata in bs.bootstrap(5):
    
    tests/rliable/library_test.py:40: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    env/lib/python3.9/site-packages/arch/bootstrap/base.py:694: in bootstrap
        yield self._resample()
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = Stratified Bootstrap(no. pos. inputs: 1, no. keyword inputs: 2, ID: 0x15b353a00)
    
        def _resample(self) -> Tuple[Tuple[ArrayLike, ...], Dict[str, ArrayLike]]:
            """
            Resample all data using the values in _index
            """
            indices = self._index
    >       assert isinstance(indices, np.ndarray)
    E       AssertionError
    
    env/lib/python3.9/site-packages/arch/bootstrap/base.py:1294: AssertionError
    _______________________________________________ LibraryTest.test_stratified_bootstrap_runs_only ________________________________________________
    
    self = <library_test.LibraryTest testMethod=test_stratified_bootstrap_runs_only>, task_bootstrap = False
    
        @parameterized.named_parameters(
            dict(testcase_name="runs_only", task_bootstrap=False),
            dict(testcase_name="runs_and_tasks", task_bootstrap=True))
        def test_stratified_bootstrap(self, task_bootstrap):
          """Tests StratifiedBootstrap."""
          bs = rly.StratifiedBootstrap(
              self._x, y=self._y, z=self._z, task_bootstrap=task_bootstrap)
    >     for data, kwdata in bs.bootstrap(5):
    
    tests/rliable/library_test.py:40: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    env/lib/python3.9/site-packages/arch/bootstrap/base.py:694: in bootstrap
        yield self._resample()
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = Stratified Bootstrap(no. pos. inputs: 1, no. keyword inputs: 2, ID: 0x15b2ff1f0)
    
        def _resample(self) -> Tuple[Tuple[ArrayLike, ...], Dict[str, ArrayLike]]:
            """
            Resample all data using the values in _index
            """
            indices = self._index
    >       assert isinstance(indices, np.ndarray)
    E       AssertionError
    
    env/lib/python3.9/site-packages/arch/bootstrap/base.py:1294: AssertionError
    

    It seems like there are breaking changes between arch 5.0.1 and arch 5.2.0. Maybe this issue can be solved by updating this dependency to it's current version.

    opened by qgallouedec 10
  • Bug in plot_utils.py

    Bug in plot_utils.py

    Hi,

    In plot_utils.py, I think this line ought to be algorithms = list(point_estimates.keys()) https://github.com/google-research/rliable/blob/72fc16c31c4021b72e7b21f3ba915e1b38cff481/rliable/plot_utils.py#L245 Otherwise, algorithms cannot be indexed in the next line.

    opened by zhefan 2
  • Question about documentation in probability_of_improvement

    Question about documentation in probability_of_improvement

    Hi, I wonder if the documentation in probability_of_improvement function in metrics.py is wrong? Specifically,

    scores_x: A matrix of size (num_runs_x x num_tasks) where scores_x[m][n] represent the score on run n of task m for algorithm X. https://github.com/google-research/rliable/blob/cc5eff51cab488b34cfeb5c5e37eae7a6b4a92b2/rliable/metrics.py#L77)

    Should scores_x[n][m] be the score on run n of task m for algorithm X?

    Thanks.

    opened by zhefan 2
  • Downloading data set always stuck

    Downloading data set always stuck

    Thanks for sharing the repo. There is a problem that every time I download the dataset, it is always stuck somewhere at 9X% Do you know what might cause this?

    ...
    Copying gs://rl-benchmark-data/atari_100k/SimPLe.json...
    Copying gs://rl-benchmark-data/atari_100k/OTRainbow.json...
    [55/59 files][  2.9 MiB/  3.0 MiB]  98% Done
    
    opened by HYDesmondLiu 2
  • Fix dict_keys object -> list

    Fix dict_keys object -> list

    This fixes a downstream task where algorithms[0] in the following line fails because point_estimates.keys() returns a dict_keys object, not a subscriptable list.

    opened by jjshoots 1
  • How can I access the data directly without using gsutil?

    How can I access the data directly without using gsutil?

    I haven't got gsutil set up on my M1 MacBook and I'm not sure the steps are super streamlined. Can I somehow access the data from my browser or download it another way?

    documentation 
    opened by slerman12 1
  • Add installation of compatible arch version to notebook

    Add installation of compatible arch version to notebook

    Latest arch version raises an exception when calling create_performance_profile. Adding !pip install arch==5.0.1 to the notebook file resolves the issue. This change should be reflected in the hosted colab notebook.

    opened by Aladoro 1
  • Customisable linestyles in performance profile plots

    Customisable linestyles in performance profile plots

    The primary reason for this PR is an added option for customising linestyles in performance profile plots. It works in exactly the same way as the colors parameter it already had; a map, None by default which means all methods are plotted as solid lines, but a map can be passed in to change the linestyles of every method's plot.

    Here you can see, as an example, a plot I'm currently working on where I'm using this functionality to have some methods plotted as dotted lines instead of solid ones:

    afbeelding

    Additionally, I have added a .gitignore file to ignore some files that were automatically created when I installed rliable with pip from local source code in my own fork of the repo, and files created by working with rliable source code in the PyCharm IDE.

    opened by DennisSoemers 1
  • README image link broken: ale_score_distributions_new.png

    README image link broken: ale_score_distributions_new.png

    It seems that the file images/ale_score_distributions_new.png pointed to in the README (https://github.com/google-research/rliable#performance-profiles) was deleted in one of the recent commits.

    opened by nirbhayjm 1
  • Urgent question about data aggregates

    Urgent question about data aggregates

    Hi, we compiled the Atari 100k results from DrQ, CURL, and DER, and the mean/median human-norm scores are well below those reported in prior works, including from co-authors of the rliable paper.

    We have median human-norm scores all around 0.10 - 0.12.

    Is this accurate? Of all of these, DER (the oldest of the algs) has the highest mean human-norm score.

    opened by slerman12 1
Releases(v1.0)
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Fine-tune pretrained Convolutional Neural Networks with PyTorch

Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A

Alex Parinov 694 Nov 23, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022