3D Human Pose Machines with Self-supervised Learning

Overview

3D Human Pose Machines with Self-supervised Learning

Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, โ€œ3D Human Pose Machines with Self-supervised Learningโ€. To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019.

This repository implements a 3D human pose machine to resolve 3D pose sequence generation for monocular frames, and includes a concise self-supervised correction mechanism to enhance our model by retaining the 3D geometric consistency. The main part is written in C++ and powered by Caffe deep learning toolbox. Another is written in Python and powered by Tensorflow.

Results

We proposed results on the Human3.6M, KTH Football II and MPII dataset.

   

   

   

License

This project is Only released for Academic Research Use.

Get Started

Clone the repo:

git clone https://github.com/chanyn/3Dpose_ssl.git

or directly download from https://www.dropbox.com/s/qycpjinof2ishw9/3Dpose_ssl.tar.gz?dl=0 (including datasets and well-compiled caffe under cuda-8.0)

Our code is organized as follows:

caffe-3dssl/: support caffe
models/: pretrained models and results
prototxt/: network architecture definitions
tensorflow/: code for online refine 
test/: script that run results split by action 
tools/: python and matlab code 

Requirements

  1. NVIDIA GPU and cuDNN are required to have fast speeds. For now, CUDA 8.0 with cuDNN 5.1 has been tested. The other versions should be working.
  2. Caffe Python wrapper is required.
  3. Tensorflow 1.1.0
  4. python 2.7.13
  5. MATLAB
  6. Opencv-python

Installation

  1. Build 3Dssl Caffe

       cd $ROOT/caffe-3dssl    # Follow the Caffe installation instructions here:    #   http://caffe.berkeleyvision.org/installation.html        # If you're experienced with Caffe and have all of the requirements installed    # and your Makefile.config in place, then simply do:    make all -j 8        make pycaffe    

  1. Install Tensorflow

Datasets

  • Human3.6m

  We change annotation of Human3.6m to hold 16 points ( 'RFoot' 'RKnee' 'RHip' 'LHip' 'LKnee' 'LFoot' 'Hip' 'Spine' 'Thorax' 'Head' 'RWrist' 'RElbow'  'RShoulder' 'LShoulder' 'LElbow' 'LWrist') in keeping with MPII.

  We have provided count mean file and protocol #I & protocol #III split list of Human3.6m. Follow Human3.6m website to download videos and API. We split each video per 5 frames, you can directly download processed square data in this link.  And list format of 16skel_train/test_* is [img_path] [P12dx, P12dy, P22dx, P22dy,..., P13dx, P13dy, P13dz, P23dx, P23dy, P23dz,...] clip. Clip = 0 denote reset lstm.

  shell   # files construction   h36m   |_gt # 2d and 3d annotations splited by actions   |_hg2dh36m # 2d estimation predicted by *Hourglass*, 'square' denotes prediction of square image.   |_ours_2d # 2d prediction from our model   |_ours_3d # 3d coarse prediction of *Model Extension: mask3d*   |_16skel_train_2d3d_clip.txt # train list of *Protocol I*   |_16skel_test_2d3d_clip.txt   |_16skel_train_2d3d_p3_clip.txt # train list of *Protocol III*   |_16skel_test_2d3d_p3_clip.txt   |_16point_mean_limb_scaled_max_min.csv #16 points normalize by (x-min) / (max-min)  

  After setting up Human3.6m dataset following its illustration and download the above training/testing list. You should update โ€œroot_folderโ€ paths in CAFFE_ROOT/examples/.../*.prototxt for images and annotation director.

  • MPII

  We crop and square single person from  all images and update 2d annotation in train_h36m.txt (resort points according to order of Human3.6m points).

    mkdir data/MPII   cd data/MPII   wget -v https://drive.google.com/open?id=16gQJvf4wHLEconStLOh5Y7EzcnBUhoM-   tar -xzvf MPII_square.tar.gz   rm -f MPII_square.tar.gz  

 

Training

Offline Phase

Our model consists of two cascade modules, so the training phase can be divided into the following steps:

cd CAFFE_ROOT
  1. Pre-train the 2D pose sub-network with MPII. You can follow CPM or Hourglass or other 2D pose estimation method. We provide pretrained CPM-caffemodel. Please put it into CAFFE_ROOT/models/.

  2. Train 2D-to-3D pose transformer module with Human3.6M. And we fix the parameters of the 2D pose sub-network. The corresponding prototxt file is in examples/2D_to_3D/bilstm.prototxt.

       sh examples/2D_to_3D/train.sh    

  1. To train 3D-to-2D pose projector module, we fix the above module weights. And we need in the wild 2D Pose dataset to help training (we choose MPII).

   sh    sh examples/3D_to_2D/train.sh    

  1. Fine-tune the whole model jointly. We provide trained model and coarse prediction of Protocol I and Protocol III.

   sh    sh examples/finetune_whole/train.sh    

  1. Model extension: Add rand mask to relieve model bias. We provide corresponding model files in examples/mask3d.

   sh    sh examples/mask3d/train.sh    

Model Inference

3D-to-2D project module is initialized from the well-trained model, and they will be updated by minimizing the difference between the predicted 2D pose and projected 2D pose.

  shell   # Step1: Download the trained model   cd PROJECT_ROOT   mkdir models   cd models   wget -v https://drive.google.com/open?id=1dMuPuD_JdHuMIMapwE2DwgJ2IGK04xhQ   unzip model_extension_mask3d.zip   rm -r model_extension_mask3d.zip   cd ../     # Step2: save coarse 3D prediction   cd test   # change 'data_root' in test_human16.sh   # change 'root_folder' in template_16_merge.prototxt   # test_human16.sh [$1 deploy.prototxt] [$2 trained model] [$3 save dir] [$4 batchsize]   sh test_human16.sh . ../models/model_extension_mask3d/mask3d_iter_400000.caffemodel mask3d 5     # Step3: online refine 3D pose prediction   # protocal: 1/3 , default is 1   # pose2d: ours/hourglass/gt, default is ours   # coarse_3d: saved results in Sept2   python pred_v2.py --trained_model ../models/model_extension_mask3d/mask3d-400000.pkl --protocol 1 --data_dir /data/h36m/ --coarse_3d ../test/mask3d --save srr_results --pose2d hourglass  

 

  shell   # Maybe you want to predict 2d.   # The model we use to predict 2d pose is similar to our 3dpredict model without ssl module.   # Or you can use Hourglass(https://github.com/princeton-vl/pose-hg-demo) to predict 2d pose     # Step1.1: Download the trained merge model   cd PROJECT_ROOT   mkdir models && cd models   wget -v https://drive.google.com/open?id=19kTyttzUnm_1_7HEwoNKCXPP2QVo_zcK   unzip our2d.zip   rm -r our2d.zip   # move 2d prototxt to PROJECT_ROOT/test/   mv our2d/2d ../test/   cd ../     # Step1.2: save 2D prediction   cd test   # change 'data_root' in test_human16.sh   # change 'root_folder' in 2d/template_16_merge.prototxt   # test_human16.sh [$1 deploy.prototxt] [$2 trained model] [$3 save dir] [$4 batchsize]   sh test_human16.sh 2d/ ../models/our2d/2d_iter_800000.caffemodel our2d 5   # replace predict 2d pose in data dir or change data_dir in tensorflow/pred_v2.py   mv our2d /data/h36m/ours_2d/bilstm2d-p1-800000       # Step2 is same as above       # Step3: online refine 3D pose prediction   # protocal: 1/3 , default is 1   # pose2d: ours/hourglass/gt, default is ours   # coarse_3d: saved results in Sept2   python pred_v2.py --trained_model ../models/model_extension_mask3d/mask3d-400000.pkl --protocol 1 --data_dir /data/h36m/ --coarse_3d ../test/mask3d --save srr_results --pose2d ours  

 

  • Inference with yourself

  The only difference is that you should transfer caffemodel of 3D-to-2D project module to pkl file. We provide gen_refinepkl.py in tools/.

  sh   # Follow above Step1~2 to produce coarse 3d prediction and 2d pose.   # transfer caffemodel of SRR module to python .pkl file   python tools/gen_refinepkl.py CAFFE_ROOT CAFFEMODEL_DIR --pkl_dir model.pkl     # online refine 3D pose prediction   python pred_v2.py --trained_model model.pkl  

 

  • Evaluation

  shell   # Print MPJP   run tools/eval_h36m.m     # Visualization of 2dpose/ 3d gt pose/ 3d coarse pose/ 3d refine pose   # Please change data_root in visualization.m before running   run visualization.m  

Citation

@article{wang20193d,
  title={3D Human Pose Machines with Self-supervised Learning},
  author={Wang, Keze and Lin, Liang and Jiang, Chenhan and Qian, Chen and Wei, Pengxu},
  journal={IEEE transactions on pattern analysis and machine intelligence},
  year={2019},
  publisher={IEEE}
}
Owner
Chenhan Jiang
Chenhan Jiang
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
๐Ÿ›ฐ๏ธ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some โค๏ธ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch ์•ˆ๋…•ํ•˜์„ธ์š”. ์ €๋Š” TUNiB์—์„œ ๋จธ์‹ ๋Ÿฌ๋‹ ์—”์ง€๋‹ˆ์–ด๋กœ ๊ทผ๋ฌด ์ค‘์ธ ๊ณ ํ˜„์›…์ž…๋‹ˆ๋‹ค. ์ด ์ž๋ฃŒ๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด๋ชจ๋ธ ๊ฐœ๋ฐœ์— ํ•„์š”ํ•œ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๊ธฐ์ˆ ๋“ค์„ ์†Œ๊ฐœ๋“œ๋ฆฌ๊ธฐ ์œ„ํ•ด ๋งˆ๋ จํ•˜์˜€์œผ๋ฉฐ ๊ธฐ๋ณธ์ ์œผ๋กœ

TUNiB 172 Dec 29, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
Learning Visual Words for Weakly-Supervised Semantic Segmentation

[IJCAI 2021] Learning Visual Words for Weakly-Supervised Semantic Segmentation Implementation of IJCAI 2021 paper Learning Visual Words for Weakly-Sup

Lixiang Ru 24 Oct 05, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022