Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

Overview

CuPyTorch

CuPyTorch是一个小型PyTorch,名字来源于:

  1. 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持cuda计算
  2. 发音与Cool PyTorch接近,因为使用不超过1000行纯Python代码实现PyTorch确实很cool

CuPyTorch支持numpy和cupy两种计算后端,实现大量PyTorch常用功能,力求99%兼容PyTorch语法语义,并能轻松扩展,以下列出已经完成的功能:

  • tensor:

    • tensor: 创建张量
    • arange: 区间等差张量
    • stack: 堆叠张量
    • ones/zeros, ones/zeros_like: 全1/0张量
    • rand/randn, rand/randn_like: 0~1均匀分布/高斯分布张量
    • +, -, *, /, @, **: 双目数值运算及其右值和原地操作
    • >, <, ==, >=, <=, !=: 比较运算
    • &, |, ^: 双目逻辑运算
    • ~, -: 取反/取负运算
    • []: 基本和花式索引和切片操作
    • abs, exp, log, sqrt: 数值运算
    • sum, mean: 数据归约操作
    • max/min, amax/amin, argmax/argmin: 最大/小值及其索引计算
  • autograd: 支持以上所有非整数限定运算的自动微分

  • nn:

    • Module: 模型基类,管理参数,格式化打印
    • activation: ReLU, GeLU, Sigmoid, Tanh, Softmax, LogSoftmax
    • loss: L1Loss, MSELoss, NLLLoss, CrossEntropyLoss
    • layer: Linear, Dropout ,LSTM
  • optim:

    • Optimizer: 优化器基类,管理参数,格式化打印
    • SGD, Adam: 两个最常见的优化器
    • lr_scheduler: LambdaLRStepLR学习率调度器
  • utils.data:

    • DataLoader: 批量迭代Tensor数据,支持随机打乱
    • Dataset: 数据集基类,用于继承
    • TensorDataset: 纯用Tensor构成的数据集

cloc的代码统计结果:

Language files blank comment code
Python 22 353 27 992

自动微分示例:

import cupytorch as ct

a = ct.tensor([[-1., 2], [-3., 4.]], requires_grad=True)
b = ct.tensor([[4., 3.], [2., 1.]], requires_grad=True)
c = ct.tensor([[1., 2.], [0., 2.]], requires_grad=True)
d = ct.tensor([1., -2.], requires_grad=True)
e = a @ b.T
f = (c.max(1)[0].exp() + e[:, 0] + b.pow(2) + 2 * d.reshape(2, 1).abs()).mean()
print(f)
f.backward()
print(a.grad)
print(b.grad)
print(c.grad)
print(d.grad)

# tensor(18.889057, grad_fn=<MeanBackward>)
# tensor([[2.  1.5]
#         [2.  1.5]])
# tensor([[0.  4.5]
#         [1.  0.5]])
# tensor([[0.       3.694528]
#         [0.       3.694528]])
# tensor([ 1. -1.])

手写数字识别示例:

from pathlib import Path
import cupytorch as ct
from cupytorch import nn
from cupytorch.optim import SGD
from cupytorch.optim.lr_scheduler import StepLR
from cupytorch.utils.data import TensorDataset, DataLoader


class Net(nn.Module):
    
    def __init__(self, num_pixel: int, num_class: int):
        super().__init__()
        self.num_pixel = num_pixel
        self.fc1 = nn.Linear(num_pixel, 256)
        self.fc2 = nn.Linear(256, 64)
        self.fc3 = nn.Linear(64, num_class)
        self.act = nn.ReLU()
        self.drop = nn.Dropout(0.1)
    
    def forward(self, input: ct.Tensor) -> ct.Tensor:
        output = input.view(-1, self.num_pixel)
        output = self.drop(self.act(self.fc1(output)))
        output = self.drop(self.act(self.fc2(output)))
        return self.fc3(output)


def load(path: Path):
    # define how to load data as tensor
    pass


path = Path('../datasets/MNIST')
train_dl = DataLoader(TensorDataset(load(path / 'train-images-idx3-ubyte.gz'),
                                    load(path / 'train-labels-idx1-ubyte.gz')),
                      batch_size=20, shuffle=True)
test_dl = DataLoader(TensorDataset(load(path / 't10k-images-idx3-ubyte.gz'),
                                   load(path / 't10k-labels-idx1-ubyte.gz')),
                     batch_size=20, shuffle=False)
model = Net(28 * 28, 10)
criterion = nn.CrossEntropyLoss()
optimizer = SGD(model.parameters(), lr=1e-3, momentum=0.9)
scheduler = StepLR(optimizer, 5, 0.5)

print(model)
print(optimizer)
print(criterion)

for epoch in range(10):
    losses = 0
    for step, (x, y) in enumerate(train_dl, 1):
        optimizer.zero_grad()
        z = model(x)
        loss = criterion(z, y)
        loss.backward()
        optimizer.step()
        losses += loss.item()
        if step % 500 == 0:
            losses /= 500
            print(f'Epoch: {epoch}, Train Step: {step}, Train Loss: {losses:.6f}')
            losses = 0
    scheduler.step()

examples文件夹中提供了两个完整示例:

  • MNIST数据集上使用MLP做手写数字分类
  • NN5数据集上使用LSTM做ATM机取款预测

参考:

Owner
Xingkai Yu
Xingkai Yu
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022