ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Overview

#ByteTrack训练自己数据集详细教程!!

一、配置环境

1. Installing on the host machine

Step1. Install ByteTrack.

git clone https://github.com/Double-zh/ByteTrack.git
cd ByteTrack
pip3 install -r requirements.txt
python3 setup.py develop

Step2. Install pycocotools.

pip3 install cython; pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

Step3. Others

pip3 install cython_bbox

2. Docker build

docker build -t bytetrack:latest .

# Startup sample
mkdir -p pretrained && \
mkdir -p YOLOX_outputs && \
xhost +local: && \
docker run --gpus all -it --rm \
-v $PWD/pretrained:/workspace/ByteTrack/pretrained \
-v $PWD/datasets:/workspace/ByteTrack/datasets \
-v $PWD/YOLOX_outputs:/workspace/ByteTrack/YOLOX_outputs \
-v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
--device /dev/video0:/dev/video0:mwr \
--net=host \
-e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
-e DISPLAY=$DISPLAY \
--privileged \
bytetrack:latest

二、准备VOC数据集和下载预训练模型

### 1. datasets
           └——————VOCdevkit
           |         └——————VOC2012
           |                   └——————Annotations
           |                   └——————ImageSets
           |                                 └——————Main
           |                   └——————JPEGImages
                               └—————— divide_dataset.py

2. Download pretrained model

The COCO pretrained YOLOX model can be downloaded from their [model zoo](https://github.com/Megvii-BaseDetection/YOLOX/tree/0.1.0). After downloading the pretrained models, you can put them under 
   
    /pretrained.

   

三、准备模型配置文件{create a Exp file for your dataset && modify get_data_loader and get_eval_loader in your Exp file}

根据需求修改文件yolox_voc_s_ZZH.py的种类数,在路径"exps/example/custom/"文件夹下

class Exp(MyExp):
    def __init__(self):
        super(Exp, self).__init__()
        self.num_classes = 2 #在这进行修改
        self.depth = 0.33
        self.width = 0.50
        self.warmup_epochs = 1

四、Training

Train with custom dataset

cd <ByteTrack_HOME>
python3 train.py -f exps/example/custom/yolox_voc_s_ZZH.py -d 1 -b 1 --fp16 -o -c pretrained/yolox_s.pth

五、Demo

1. 调用摄像头进行实时检测跟踪,并保存结果

cd <ByteTrack_HOME>

python3 ZZH_track.py webcam -f exps/example/custom/yolox_voc_s_ZZH.py -c YOLOX_outputs/yolox_voc_s_ZZH/latest_ckpt.pth.tar --fp16 --fuse --save_result

2. 对视频进行检测跟踪,并保存结果

取消注释ZZH_track.py第227行代码,并注释第228行代码

```shell
cd 
   
    

python3 ZZH_track.py video -f exps/example/custom/yolox_voc_s_ZZH.py -c YOLOX_outputs/yolox_voc_s_ZZH/latest_ckpt.pth.tar --fp16 --fuse --save_result

   

六、Deploy

  1. ONNX export and ONNXRuntime
  2. TensorRT in Python
  3. TensorRT in C++
  4. ncnn in C++

七、Citation

@article{zhang2021bytetrack,
  title={ByteTrack: Multi-Object Tracking by Associating Every Detection Box},
  author={Zhang, Yifu and Sun, Peize and Jiang, Yi and Yu, Dongdong and Yuan, Zehuan and Luo, Ping and Liu, Wenyu and Wang, Xinggang},
  journal={arXiv preprint arXiv:2110.06864},
  year={2021}
}

八、Acknowledgement

A large part of the code is borrowed from YOLOX, FairMOT, TransTrack and JDE-Cpp. Many thanks for their wonderful works.

Owner
Double-zh
Double-zh
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022