Learning to Draw: Emergent Communication through Sketching

Overview

Learning to Draw: Emergent Communication through Sketching

This is the official code for the paper "Learning to Draw: Emergent Communication through Sketching".

ArXivPapers With CodeGetting StartedGame setupsModel setupDatasets

About

We demonstrate that it is possible for a communication channel based on line drawing to emerge between agents playing a visual referential communication game. Furthermore we show that with a simple additional self-supervised loss that the drawings the agent produces are interpretable by humans.

Getting started

You'll need to install the required dependencies listed in requirements.txt. This includes installing the differentiable rasteriser from the DifferentiableSketching repository, and the source version of https://github.com/pytorchbearer/torchbearer:

pip install git+https://github.com/jonhare/DifferentiableSketching.git
pip install git+https://github.com/pytorchbearer/torchbearer.git
pip install -r requirements.txt

Once the dependencies are installed, you can run the commgame.py script to train and test models:

python commgame.py train [args]
python commgame.py test [args]

For example, to train a pair of agents on the original game using the STL10 dataset (which will be downloaded if required), you would run:

python commgame.py train --dataset STL10 --output stl10-original-model --sigma2 5e-4 --nlines 20 --learning-rate 0.0001 --imagenet-weights --freeze-vgg --imagenet-norm --epochs 250 --invert --batch-size 100

The options --sigma2 and --nlines control the thickness and number of lines respectively. --imagenet-weights uses the standard pretrained imagenet vgg16 weights (use --sin-weights for stylized imagenet weights). Finally, --freeze-vgg freezes the backbone CNN, --imagenet-norm specifies to apply the imagenet normalisation to images (this should be used when using either imagenet or stylized imagenet weights), and --invert draws black strokes on a white canvas.

The training scripts compute a running communication rate in addition to loss and this is displayed as training progresses. After each epoch a validation pass is performed and images of the sketches and sender inputs and receiver targets are saved to the output directory along with a model snapshot. The output directory also contains a log file with the training and validation statistics per epoch.

Example commands to run the experiments in the paper are given in commands.md

Further details on commandline arguments are given below.

Game setups

All the setups involve a referential game where the reciever tries to select the "correct" image from a pool on the basis of a "sketch" provided by the sender. The primary measure of success is the communication rate. The different command line arguments to control the different game variants are listed in the following subsections:

Havrylov and Titov's Original Game Setup

Sender sees one image; Reciever sees many, where one is exactly the same as sender.

Number of reciever images (target + distractors) is controlled by the batch-size. Number of sender images per iteration can also be controlled for completeness, but defaults to the same as batch size (e.g. each forward pass with a batch plays all possible game combinations using each of the images as a target).

arguments:
--batch-size
[--sender-images-per-iter]

Object-oriented Game Setup (same)

Sender sees one image; Reciever sees many, where one is exactly the same as sender and the others are all of different classes.

arguments:
--object-oriented same
[--num-targets]
[--sender-images-per-iter]

Object-oriented Game Setup (different)

Sender sees one image; Reciever sees many, each of different classes; one of the images is the same class as the sender, but is a completely different image).

arguments:
--object-oriented different 
[--num-targets]
[--sender-images-per-iter]
[--random-transform-sender]

Model setup

Sender

The "sender" consists of a backbone VGG16 CNN which translates the input image into a latent vector and a "decoder" with an MLP that projects the latent representation from the backbone to a set of drawing commands that are differentiably rendered into an image which is sent to the "reciever".

The backbone can optionally be initialised with pretrained weight and also optionally frozen (except for the final linear projection). The backbone, including linear projection can be shared between sender and reciever (default) or separate (--separate_encoders).

arguments:
[--freeze-vgg]
[--imagenet-weights --imagenet-norm] 
[--sin-weights --imagenet-norm] 
[--separate_encoders]

Receiver

The "receiver" consists of a backbone CNN which is used to convert visual inputs (both the images in the pool and the sketch) into a latent vector which is then transformed into a different latent representation by an MLP. These projected latent vectors are used for prediction and in the loss as described below.

The actual backbone CNN model architecture will be the same as the sender's. The backbone can optionally share parameters with the "sender" agent. Alternatively it can be initialised with pre-trained weights, and also optionally frozen.

arguments:
[--freeze-vgg]
[--imagenet-weights --imagenet-norm]
[--separate_encoders]

Datasets

  • MNIST
  • CIFAR-10 / CIFAR-100
  • TinyImageNet
  • CelebA (--image-size to control size; default 64px)
  • STL-10
  • Caltech101 (training data is balanced by supersampling with augmentation)

Datasets will be downloaded to the dataset root directory (default ./data) as required.

arguments: 
--dataset {CIFAR10,CelebA,MNIST,STL10,TinyImageNet,Caltech101}  
[--dataset-root]

Citation

If you find this repository useful for your research, please cite our paper using the following.

  @@inproceedings{
  mihai2021learning,
  title={Learning to Draw: Emergent Communication through Sketching},
  author={Daniela Mihai and Jonathon Hare},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021},
  url={https://openreview.net/forum?id=YIyYkoJX2eA}
  }
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022