Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

Overview

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support

  • mnist, svhn
  • cifar10, cifar100
  • stl10
  • alexnet
  • vgg16, vgg16_bn, vgg19, vgg19_bn
  • resnet18, resnet34, resnet50, resnet101, resnet152
  • squeezenet_v0, squeezenet_v1
  • inception_v3

Here is an example for MNIST dataset. This will download the dataset and pre-trained model automatically.

import torch
from torch.autograd import Variable
from utee import selector
model_raw, ds_fetcher, is_imagenet = selector.select('mnist')
ds_val = ds_fetcher(batch_size=10, train=False, val=True)
for idx, (data, target) in enumerate(ds_val):
    data =  Variable(torch.FloatTensor(data)).cuda()
    output = model_raw(data)

Also, if want to train the MLP model on mnist, simply run python mnist/train.py

Install

python3 setup.py develop --user

ImageNet dataset

We provide precomputed imagenet validation dataset with 224x224x3 size. We first resize the shorter size of image to 256, then we crop 224x224 image in the center. Then we encode the cropped images to jpg string and dump to pickle.

Quantization

We also provide a simple demo to quantize these models to specified bit-width with several methods, including linear method, minmax method and non-linear method.

quantize --type cifar10 --quant_method linear --param_bits 8 --fwd_bits 8 --bn_bits 8 --ngpu 1

Top1 Accuracy

We evaluate the performance of popular dataset and models with linear quantized method. The bit-width of running mean and running variance in BN are 10 bits for all results. (except for 32-float)

Model 32-float 12-bit 10-bit 8-bit 6-bit
MNIST 98.42 98.43 98.44 98.44 98.32
SVHN 96.03 96.03 96.04 96.02 95.46
CIFAR10 93.78 93.79 93.80 93.58 90.86
CIFAR100 74.27 74.21 74.19 73.70 66.32
STL10 77.59 77.65 77.70 77.59 73.40
AlexNet 55.70/78.42 55.66/78.41 55.54/78.39 54.17/77.29 18.19/36.25
VGG16 70.44/89.43 70.45/89.43 70.44/89.33 69.99/89.17 53.33/76.32
VGG19 71.36/89.94 71.35/89.93 71.34/89.88 70.88/89.62 56.00/78.62
ResNet18 68.63/88.31 68.62/88.33 68.49/88.25 66.80/87.20 19.14/36.49
ResNet34 72.50/90.86 72.46/90.82 72.45/90.85 71.47/90.00 32.25/55.71
ResNet50 74.98/92.17 74.94/92.12 74.91/92.09 72.54/90.44 2.43/5.36
ResNet101 76.69/93.30 76.66/93.25 76.22/92.90 65.69/79.54 1.41/1.18
ResNet152 77.55/93.59 77.51/93.62 77.40/93.54 74.95/92.46 9.29/16.75
SqueezeNetV0 56.73/79.39 56.75/79.40 56.70/79.27 53.93/77.04 14.21/29.74
SqueezeNetV1 56.52/79.13 56.52/79.15 56.24/79.03 54.56/77.33 17.10/32.46
InceptionV3 76.41/92.78 76.43/92.71 76.44/92.73 73.67/91.34 1.50/4.82

Note: ImageNet 32-float models are directly from torchvision

Selected Arguments

Here we give an overview of selected arguments of quantize.py

Flag Default value Description & Options
type cifar10 mnist,svhn,cifar10,cifar100,stl10,alexnet,vgg16,vgg16_bn,vgg19,vgg19_bn,resent18,resent34,resnet50,resnet101,resnet152,squeezenet_v0,squeezenet_v1,inception_v3
quant_method linear quantization method:linear,minmax,log,tanh
param_bits 8 bit-width of weights and bias
fwd_bits 8 bit-width of activation
bn_bits 32 bit-width of running mean and running vairance
overflow_rate 0.0 overflow rate threshold for linear quantization method
n_samples 20 number of samples to make statistics for activation
Owner
Aaron Chen
Aaron Chen
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022