OMAMO: orthology-based model organism selection

Related tags

Deep Learningomamo
Overview

OMAMO: orthology-based model organism selection

workflow diagram

OMAMO is a tool that suggests the best model organism to study a biological process based on orthologous relationship between a species and human.

The user can consider several species as potential model organisms and the algorithm will rank them and report the output for a given biological process (searched as a GO term or a GO ID) is produced in the dataframe format.

Pipeline

Firstly, download the OMA dataset:

wget  https://omabrowser.org/All/OmaServer.h5  -O data/OmaServer.h5  #caution: 94GB

Secondly, using the file data/oma-species.txt find the five-letter UniProt code for species of interest. For example, consider three species Dicdyostelium discodeium , Neurospora crassa and Schizosaccharomyces pombe. Their UniProt codes are DICDI, NEUCR and SCHPO, respectively.

Then, run the code omamo_base.py for each species code (DICDI, NEUCR and SCHPO):

species="DICDI"
mkdir output; cd output

python3 ../omamo_base.py ../data/OmaServer.h5 ../data/go_positive_annotations.tsv ${species}

Once the code finished running, the outputs include ${species}2.csv files which should be combined to create a final dataframe using the code omamo_dataframe.py:

python3 omamo_dataframe.py output

where output is the name of the directory where the user wishes to save the output.

Finally, the output data frame is ready as a CSV file omamo_output_df.csv.

OMAMO Website

You can also visit the OMAMO website, where you can browse biological processes to study in 50 unicellular species.

Change log

Version 0.0.1

  • Initial release

Citation

Alina Nicheperovich, Adrian M Altenhoff, Christophe Dessimoz, Sina Majidian, "OMAMO: orthology-based model organism selection", submitted to Bioinformatics journal.

License

OMAMO is a free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

OMAMO is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with OMAMO. If not, see http://www.gnu.org/licenses/.

Owner
Dessimoz Lab
Dessimoz Lab
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022