Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

Related tags

Deep LearningDSP
Overview

DSP

Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021.

Authors: Li Gao, Jing Zhang, Lefei Zhang, Dacheng Tao.

Prerequisite

  • CUDA/CUDNN
  • Python3
  • PyTorch==1.7
  • Packages found in requirements.txt
  1. Creat a new conda environment
conda create -n dsp_env python=3.7
conda activate dsp_env
conda install pytorch=1.7 torchvision torchaudio cudatoolkit -c pytorch
pip install -r requirements.txt
  1. Download the code from github and change the directory
git clone https://github.com/GaoLii/DSP/
cd DSP
  1. Prepare dataset

Download Cityscapes, GTA5 and SYNTHIA dataset, then organize the folder as follows:

├── ../../dataset/
│   ├── Cityscapes/     
|   |   ├── gtFine/
|   |   ├── leftImg8bit/
│   ├── GTA5/
|   |   ├── images/
|   |   ├── labels/
│   ├── RAND_CITYSCAPES/ 
|   |   ├── GT/
|   |   ├── RGB/
...

Training and Evaluation example

Training and evaluation are on a single Tesla V100 GPU with 16G memory.

Train with unsupervised domain adaptation

GTA5->CityScapes

python train_DSP.py --config ./configs/configUDA_gta.json --name UDA_gta

SYNTHIA->CityScapes

python train_DSP.py --config ./configs/configUDA_syn.json --name UDA_syn

Evaluation

python evaluateUDA.py --model-path checkpoint.pth

Pretrained models

This model should be unzipped in the '../saved' folder.

License

The code is heavily borrowed from DACS.

If you use this code in your research please consider citing

@article{Gao_2021,
   title={DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation},
   url={https://arxiv.org/abs/2107.09600},
   DOI={10.1145/3474085.3475186},
   journal={Proceedings of the 29th ACM International Conference on Multimedia},
   publisher={ACM},
   author={Gao, Li and Zhang, Jing and Zhang, Lefei and Tao, Dacheng},
   year={2021},
   month={Oct}
}
  
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023